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Abstract

Satellite-based image classification facilitates low-costmeasurement of the Earth’s surface com-

position. However, misclassified imagery can lead to misleading conclusions about transition

processes (e.g., deforestation, urbanization, and industrialization). We propose a correction

for transition rate estimates based on the econometric measurement error literature to extract

the signal (truth) from its noisy measurement (satellite-based classifications). No ground-truth

data is required to implement the correction. Our proposed correction produces consistent

estimates of transition rates, confirmed by Monte Carlo simulations and longitudinal validation

data. In contrast, transition rates without correction for misclassification are severely biased.

Using our approach, we show how eliminating deforestation in Brazil’s Atlantic forest region

through 2040 could save $100 billion in CO2 emissions.
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1 Introduction

In recent years, publicly available satellite-based data combined with increasingly sophisticated

machine learning algorithms have provided unprecedented access to regional and global estimates

of Earth’s surface composition. Remote sensing data provide relatively low-cost information

that is difficult to obtain by other means, with high spatial resolution and wide geographic and

temporal coverage. Not surprisingly, they are increasingly used across a number of fields, including

economics, geography, biology, ecology, and political science, and in setting policy.1

However, image classification techniques, which are used to convert the spectral signature of

a pixel into an interpretable category, can lead to non-negligible misclassifications and bias areal

estimates (Czaplewski, 1992; Jain, 2020). These classification errors can also affect estimates

of the transition processes of outcomes of interest – our focus in this paper. Intuitively, errors in

classifications canmake transition rates appear excessively high. For example, much of the apparent

land cover change in satellite-based data may be the result of misclassification (Abercrombie and

Friedl, 2016). When remotely sensed rates of land cover change are used as inputs by decision

makers (e.g., regulation in Brazilian Amazonia is based on remotely sensed deforestation rates;

see Assunção et al., 2019) biases in transition rates can undermine efficient policy design and

enforcement. Similarly, Fowlie et al. (2019) show how errors in satellite-based measures of

pollution can lead to misleading information about pollution trends in different geographic areas,

leading to over-regulation in “clean” areas and under-regulation in “dirty” areas.

Tomitigate these concerns, researchers typically impose a set of heuristic and ad hoc adjustments

to stabilize classifications across years. Yet, Friedl et al. (2010) provide strong evidence that

1See Donaldson and Storeygard (2016) for an overview of applications of remotely sensed data in economics. Ge-
ographers, biologists, and ecologists have also explored remote-sensing data to investigate land cover and degradation,
terrestrial and marine ecosystems, sea level, biodiversity, and carbon emissions and carbon sequestration (Foley et al.,
2005; Geller et al., 2017).
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typical heuristic adjustments do not eliminate excessive rates of land cover change. An alternative

solution is to correct classification errors using validation data that can be treated as ground truth

(Czaplewski, 1992). However, extensive validation data are expensive to obtain and extremely

scarce in practice (Goldblatt et al., 2016), and even when validation data exists, there may be few

observations available, which limits the accuracy of the estimates.

In this paper, we propose a different approach. We present a hidden Markov model (HMM)

that corrects for misclassification bias. A HMM is the combination of an unobserved Markov

process with observations that depend only on the contemporaneous hidden state (McLachlan

and Peel, 2000). For instance, when studying land use change, the ground truth land use is the

hidden state and classifications based on remote sensing imagery are the observations.2 The idea

here is to extract the signal (truth) from its noisy measurement (satellite-based classifications).

The framework assumes that researchers either have access to panel data (with at least three time

periods) of satellite-based classifications, or that they can generate such classifications themselves

using remotely sensed data.

Based on Hu’s seminal work on non-classical measurement error (summarized in Hu (2017,

2020)), we show how the HMM assumptions allow us to uniquely recover both the true transition

probabilities and the misclassification probabilities from the observed data. The required assump-

tions (fully discussed below in Section 4) are not very restrictive in practice and some of them are

testable. We discuss two different estimators for the hidden Markov model: a minimum distance

(MD) estimator, that builds directly from the constructive identification results; and a maximum

likelihood (ML) estimator, which is implemented using the expectation-maximization (EM) algo-

rithm (Dempster et al., 1977; van Handel, 2008). Given estimated transition probabilities, we can

construct the most likely trajectory of the states for each pixel in the data.

From the perspective of implementation, there are at least two attractive features to the HMM

approach. First, we do not require ground-truth data to implement the correction. Second, the

HMM estimator can be implemented using classified data and not raw remote sensing data. These

2We use “land use” and “land cover” interchangeably in this paper.
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features allow for a division of labor between remote sensing specialists, who can classify the raw

data, and applied researchers, who can implement the correction in their application.

We investigate the performance of our strategy in two different settings: (i) a land use change

study based on rich longitudinal ground-truth validation data, and (ii) an empirical application

focused on the Brazilian Atlantic Forest, one of the world’s most threatened biodiversity hotspots.3

In the first setting, we conduct a validation exercise using ground-truth longitudinal data for the state

of Mato Grosso, Brazil, from 2006 to 2010 – a major center of agricultural production with rapid

land use change within Brazil’s Legal Amazon, a bio-administrative unit covering the Brazilian

Amazon biome. The panel data provide a unique opportunity to test the performance of the

HMM correction because they allow us to observe true transition rates (typical validation data are

composed of a single or repeated cross-sections). Our HMM-based corrections estimate transition

rates accurately; in contrast, transition rates computed without correction for misclassification are

3 to 9 times higher than observed in the ground truth data. We also improve the overall accuracy

of the original classifications by finding the most likely sequence of land uses for each pixel in the

data based on the HMM estimates.

Our second empirical application of the HMM correction concerns the social benefits from

eliminating deforestation in Brazil’s Atlantic Forest. The Atlantic Forest biome is located in the

most developed region of the country and is the most degraded Brazilian biome, containing only

roughly 30% of its original forest cover. This highly biodiverse area has been the target of various

initiatives aimed at slowing deforestation and the resulting CO2 emissions, and it was included in

Brazil’s National Determined Contribution to the Paris Climate Agreement. Applying the HMM

correction to a rich remotely sensed database of Brazilian land cover, we obtain an estimate of

2.78 million tons of carbon currently present in the forest (equivalent to roughly $774 billion in

social value). Using the raw data without correction, we obtain an estimate of just 2.39 million

tons of carbon (equivalent to roughly $666 billion). The significantly lower estimated value based

3We also carry out an extensiveMonte Carlo study, presented in the Online Appendix. There, we find that the HMM
method estimates transition probabilities and misclassification probabilities accurately, and we document important
trade-offs between the two estimators: while the MD estimator is substantially faster, the ML estimator performs better
in terms of mean-square errors.
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on the raw data is a consequence of predicting excessive land use transitions, which leads to lower

predicted ages of the forest, and therefore lower carbon stocks (younger trees store less carbon).

Simulating forward to 2040 using the HMM estimates, we predict that eliminating all deforestation

from the Atlantic Forest would prevent approximately $100 billion value in carbon emissions.

Beyond the current application (and in contexts other than deforestation), the approach we develop

can help evaluate accurately the effectiveness, and optimality, of relevant environmental policies.

Related Literature. To the best of our knowledge, the closest papers to ours are by Abercrombie

and Friedl (2016), Sandler and Rashford (2018), and Alix-Garcia and Millimet (2021). Like us,

Abercrombie and Friedl (2016) consider an HMM-based correction to errors in classifications.

They implement the HMM forward-backward algorithm (see van Handel, 2008, Chapter 3) to

determine the most likely land cover for each pixel in a given year. In contrast to their work, we

link the HMM procedure to formal identification results based on a set of explicit assumptions,

bringing transparency to the contexts in which the correction is most appropriate and highlighting

which assumptions can be tested in the data directly. Most crucially, we allow for the estimation

of time-varying transition probabilities, which is essential in many applied studies, e.g. when

estimating how (and explaining why) deforestation processes may change over time.

Sandler and Rashford (2018) andAlix-Garcia andMillimet (2021) focus on accuratelymodeling

land use as a discrete choice problem. Both papers extend (in different directions) the maximum

likelihood estimator with misclassified choices proposed by Hausman et al. (1998), and show that

their estimators perform well in practice, while standard models (e.g., probit) result in estimated

coefficients that are too close to zero, resembling an attenuation bias problem.4 We focus instead

on estimating accurately the land use variable and the transition probabilities – our contributions

4Sandler and Rashford (2018) extend Hausman et al. (1998) to cover multinomial choice models, apply it to
satellite-based agricultural land cover data in the US, and find that biofuel policies can have impacts on land use that
are orders of magnitude larger than when misclassifications are ignored (in some cases, corrected effects are 350%
larger than the uncorrected effects). Alix-Garcia and Millimet (2021) extend Hausman et al. (1998) to allow for
misclassification rates that depend on covariates and incorporate the scobit family of binary choice models, which
introduces an additional shape parameter into the link function – nesting the logit model as a special case, and helping
estimation when the outcome is of the rare-events type, as in the deforestation case. Applying their correction to a
conservation cash-transfer program in Mexico, they find greater conservation impacts than when misclassifications are
ignored.
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are therefore highly complementary.

This paper is organized as follows: Section 2 discusses the sources and consequences of

misclassifications in remote sensing data. Section 3 formalizes the misclassification problem.

Section 4 presents the HMM, the formal identification results, and two estimation methods. Section

5 describes the validation exercise using ground-truth data. Section 6 presents our empirical

application focused on the Brazilian Atlantic Forest, and Section 7 concludes.5

2 Sources and Consequences of Misclassifications

Sources of Misclassifications. In general, classifications are performed following four steps in

remote sensing projects: data acquisition, pre-processing, analysis, and evaluation. Each step is

associated with different types of potential errors, as we discuss next (Lillesand et al., 2015).

First, data is acquired by satellites as raw imagery. At this stage, errors may occur due to

the combination of the specific sensor characteristics of the satellite (including sensor noise and

response), the angle of the satellite with respect to the sun and the earth’s surface, and atmospheric

conditions, including cloud cover and haze. Second, pre-processing operations are used to correct

for these errors (geometric and radiometric corrections), but such corrections are imperfect andmay

introduce new errors. Third, researchers analyze the images by training a classification algorithm

on the pre-processed data. Continuous efforts to develop better algorithms, together with increased

computer power, may help reduce errors, but are unlikely to eliminate them completely. Finally,

the output classifications, extrapolated to the “held-out” or “testing” data set, are compared to

ground-truth data to evaluate and improve the accuracy of the classification. Here, ground-truth

data sampling may lead to further discrepancies due to, e.g., location accuracy (i.e., ground points

may not coincide exactly with the pre-processed pixels) and scale misalignment (i.e., the size of

5TheOnlineAppendix presents (i) relevantmathematical derivations for theHMMcorrection; (ii) themeasurement
error in observed transition probabilities that is implied by the HMM model, and its consequences for regression
analyses; (iii) the details of the EM and Viterbi algorithms; (iv) the Monte Carlo simulation studies; and (v) additional
details on the carbon stock empirical application. Code for replicating the Monte Carlo simulations in R is available at
https://github.com/atorch/hidden_markov_model.
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ground-truth areas may be different from the units mapped from the imagery).

In general, specialists often consider overall accuracies for land cover classifications (namely, the

percentage of correct classifications) to be acceptable when they are greater than 85%, though this

threshold may vary depending on the context (Xie et al., 2020).6 Indeed, classification accuracies

can be lower in practice, given the difficulties involved. For instance, the widely-used Cropland

Data Layer (CDL), developed by the USDepartment of Agriculture, National Agricultural Statistics

Service (USDA NASS), has an overall accuracy of roughly 90%, in Iowa in 2018; the Mapbiomas

data, Collection 5.0, has an overall accuracy of approximately 91.2% for the Brazilian territory,

and around 90% for the Atlantic Forest biome, over the years 1985–2018; and the GlobeLand30,

a global scale land cover mapping with 30 meters resolution launched by China in 2010, has an

overall accuracy of 80% in 2010.7

Consequences of Misclassification. Remotely sensed data can be used to document and inves-

tigate spatial and temporal trends, as well as in regression analyses and causal inference studies;

misclassifications in satellite-based data can affect the results of any of these types of studies.

Transition rates themselves are frequently important objects of interest. In the context of

deforestation and afforestation rates, misclassification tends to exaggerate the rate at which land

is moving in and out of forest, especially when misclassification rates are large relative to the

true transition rates (which are typically low given large conversions costs). Even if the net rate

of forest cover is accurate, exaggerated gross flows can have misleading implications for carbon

dynamics because forest biomass takesmany decades to accumulate (yonger forests hold less carbon

6For continuous variables, such as pollution, a common measure of overall accuracy (though not the only one)
is based on the 𝑅2 obtained from regressing the remotely sensed-based variable on the true measurement (based on
ground-level monitors). In practice, the 𝑅2’s can vary in the 0.6–0.9 range; see, e.g., van Donkelaar et al. (2019) for a
satellite-based measure of air quality in the US and Canada.

7The CDL Cropland Data Layer has recall rates (i.e., the percentage of correct predictions given the true land use)
of roughly 92% for corn and soy, a recall of roughly 49% for alfalfa, and of 41% for winter wheat, in Iowa in 2018; see
https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/metadata_ia18.htm for more
detail. The overall accuracies of the Mapbiomas data presented above are based on the most aggregated land cover
classifications; for the more disaggregated classifications, the accuracies drop slightly to 87% for the national territory,
and to 86% for the Atlantic Forest. The recall rate in Brazil (Atlantic Forest) is around 96% (91%) for forest and
roughly 79% (84%) for pasture; see https://mapbiomas.org/en/accuracy-analysis. For the GlobeLand300,
overall accuracies can drop to less than 65% depending on the classifier used; see Chen et al. (2015).
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than older forests). The erroneous rates can therefore distort the effectiveness, and optimality, of

environmental policies in practice. The same reasoning applies to understanding the consequences

for biodiversity, as they also depend asymmetrically on the estimated rate of habitat destruction

and recovery. Estimating transition rates accurately is important more generally, beyond the

land cover example; e.g., they are critical inputs for climate change models, which require well-

documented evolution of polar ice coverage, sea levels, wildfires, wind patterns, relative humidity,

and surface temperature, among other factors (all of which can be measured remotely based on

satellite information, given the low spatial coverage of ground monitors); transitions are also

important to study investment decisions in, say, housing innovations as in Marx et al. (2019).

In terms of regression analyses and causal inference, we note thatmeasurement error in transition

rates is not necessarily classical and can therefore lead to biases in linear and nonlinear models, and

when transition rate is either the dependent or the independent variable.8 In Online Appendix B,

we explain formally how measurement error in transition rates leads to biases in linear, logit, and

nested logit regression models when the transition rates are the dependent variable. We also show

via simulation, in Online Appendix D.5, how this measurement error in a dependent variable leads

to biased estimates of a policy designed to reduce deforestation. Researchers using remote sensing

data in regression analyses should therefore be cautious when using remotely sensed transition

rates. The HMM framework we outline below can help provide unbiased parameter estimates for

many of these scenarios.

3 Framework

In this section, we illustrate how misclassification of remote sensing data can affect estimates of

transition probabilities. Our running example is the land use classification problem, but results

can be applied to other classification problems using longitudinal remote-sensing data, such as

8Our point is different from Hausman et al. (1998) in that we consider continuously measured outcomes (transition
rates) rather than binary outcomes. In general, biases are a concern not only with remotely sensed transition rates, but
any remotely-sensed variables, such as fire incidents affecting health outcomes (Rangel and Vogl, 2019) and weather
shocks impacting civil conflicts (Harari and Ferrara, 2018).
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pollution, fire incidents, and nighttime lights.

Let 𝑆𝑖𝑡 ∈ S denote the ground truth land use at location 𝑖 at time 𝑡. In applications, a location

is usually a pixel or a spatial point. The set of possible values that 𝑆𝑖𝑡 can take is S = {𝑠1, ..., 𝑠𝐾},

𝐾 < ∞. We do not restrict the number of elements in S, so the land cover categories may be

specific and numerous, or they may be very broad such as forest and non-forest. Extensions to

continuously distributed measurements, such as pollution or nighttime light, are possible, at the

cost of more burdensome notation and additional technical details.9 The true land use 𝑆𝑖𝑡 is not

observed unless ground-truth data is collected for 𝑖 at 𝑡.

Suppose there exists an observable noisy measurement of 𝑆𝑖𝑡 denoted by𝑌𝑖𝑡 ∈ Y = {𝑦1, ..., 𝑦𝐾}.

We assume the sets Y and S are equal, but we maintain the distinction in the notation for clarity.

In typical applications, 𝑌𝑖𝑡 is the output of a classification algorithm that relies on machine learning

techniques to predict 𝑆𝑖𝑡 given a vector of (pre-processed) remote-sensing variables, 𝑅𝑖𝑡 . For

example, 𝑅𝑖𝑡 may be a vector including some vegetation index, and the reflectance patterns of

different wavelengths (infrared, red, blue, etc.) for pixel 𝑖 at time period 𝑡. We can take𝑌𝑖𝑡 = 𝑓 (𝑅𝑖𝑡),

for some function 𝑓 that depends on the data used and the classification algorithm.

We assume the researcher has access to a longitudinal data of land use classifications

{𝑌𝑖𝑡 : 𝑖 = 1, ..., 𝑁; 𝑡 = 1, ..., 𝑇}, obtained from remote-sensing data analysis (performed by the re-

searcher herself or by others). In practice, it is common to have a large set of spatial points 𝑁 and

a small number of time periods 𝑇 . Under standard regularity conditions, longitudinal data on 𝑌𝑖𝑡

can be used to estimate the transition probabilities Pr [𝑌𝑖𝑡+1 |𝑌𝑖𝑡], as well as the marginal distribution

Pr [𝑌𝑖𝑡], with high accuracy. We can therefore treat these probabilities as known by the researcher

for identification purposes. Importantly, while not explicit in the notation, we consider the analysis

conditional on some set of observable covariates. For instance, the data may come from different

subregions of a larger region of interest; the analysis can then be performed separately for (i.e.,

9For variables taking value on the real line, one needs to work in Hilbert spaces, with their corresponding operators
(see, e.g., Hu and Schennach, 2008), instead of in Euclidean spaces with transformation matrices, as we do here. In
empirical work, one may want to discretize continuously distributed variables in the data before applying our correction
– we leave the investigation of optimal discretization for future research.
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conditioned on) each subregion.10 Furthermore, we allow the transition probabilities and marginal

distributions to vary by year, so the 𝑡 subscripts on 𝑌𝑖𝑡 and 𝑆𝑖𝑡 should be understood to index the

distribution the random variable is drawn from as well as the year of the observation.

For pixel 𝑖 at time period 𝑡, the probability of observing land use prediction 𝑌𝑖𝑡 = 𝑦 is given by

Pr [𝑌𝑖𝑡 = 𝑦] =
∑︁
𝑠∈S
Pr [𝑌𝑖𝑡 = 𝑦 |𝑆𝑖𝑡 = 𝑠] Pr [𝑆𝑖𝑡 = 𝑠] ,

where Pr [𝑌𝑖𝑡 = 𝑦 |𝑆𝑖𝑡 = 𝑠] is the probability of observing land use 𝑦 when the ground truth land use

is 𝑠; this is known as the misclassification probability when 𝑦 ≠ 𝑠. As mentioned previously, errors

in classifications may be the combined result of the specific characteristics of the satellite, together

with the pre-processing and classification operations (Lillesand et al., 2015).

In matrix notation, the equation above becomes

P𝑌𝑡 = 𝚼P𝑆𝑡 , (1)

where P𝑌𝑡 is a 𝐾 × 1 vector with elements Pr [𝑌𝑖𝑡 = 𝑦𝑘 ], 𝑘 = 1, ..., 𝐾; the 𝐾 × 1 vector P𝑆𝑡 has

elements Pr [𝑆𝑖𝑡 = 𝑠𝑘 ]; and 𝚼 is a 𝐾 × 𝐾 matrix with Pr [𝑌𝑖𝑡 = 𝑦𝑙 |𝑆𝑖𝑡 = 𝑠𝑘 ], for 𝑙, 𝑘 = 1, ..., 𝐾 . We

follow the literature and refer to the elements of 𝚼 as misclassification probabilities, even though

it includes the probabilities of correct classifications on the diagonal (also known as the “recall

rate"), while the misclassification probabilities are the off-diagonal terms. For now, we consider

the case where 𝚼 is time-invariant, but the results can be extended to misclassifications that may

change over time (discussed in Remark 1 below).

While the vector P𝑌𝑡 can be estimated consistently using frequency estimators, it is not possible

to recover the true land use distribution P𝑆𝑡 without additional information. Further, there is

no guarantee that the observed (estimated) transition Pr [𝑌𝑖𝑡+1 |𝑌𝑖𝑡] is close to the true transitions

Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡].11

10Incorporating continuously distributed covariates, such as slope and altitude, is more cumbersome, but feasible.
One can apply standard kernel smoothing techniques, or parameterize the transition probability functions.

11In principle, ground-truth data can be used to estimate𝚼, which would allow us to recover the true land use shares
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4 Correction Based on the Hidden Markov Model

We now turn to our proposed solution. Here, we state Hu’s (2017) conditions and results using our

notation, andwe discuss their plausibility and restrictivenesswithin the context of our satellite-based

classification problem.12

For each point 𝑖, we assume the stochastic process {𝑌𝑖𝑡 , 𝑆𝑖𝑡 : 𝑡 = 1, 2, ...} follows a hidden

Markov process. Specifically, we assume the ground truth land cover {𝑆𝑖𝑡} follows a first-order

Markovian stochastic process with transition probabilities Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡], while 𝑌𝑖𝑡+1 is independent

of past values {𝑌𝑖𝑡−ℎ, 𝑆𝑖𝑡−ℎ}, ℎ ≥ 0, conditional on 𝑆𝑖𝑡+1. This conditional independence assumption

means that, if we know the true land use 𝑆𝑖𝑡+1, past variables (𝑌𝑖𝑡 , 𝑆𝑖𝑡) do not contain any additional

information about the noisy land-use classification 𝑌𝑖𝑡+1. This is a common assumption in the

measurement error literature (Bound et al., 2001; Schennach, 2021). Formally,

Pr
[
𝑌𝑖𝑡+1, 𝑆𝑖𝑡+1 | {𝑌𝑖𝑡−ℎ, 𝑆𝑖𝑡−ℎ}ℎ≥0

]
= Pr

[
𝑌𝑖𝑡+1 |𝑆𝑖𝑡+1, {𝑌𝑖𝑡−ℎ, 𝑆𝑖𝑡−ℎ}ℎ≥0

]
× Pr

[
𝑆𝑖𝑡+1 | {𝑌𝑖𝑡−ℎ, 𝑆𝑖𝑡−ℎ}ℎ≥0

]
= Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡+1] × Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡] . (2)

The HMM assumption is motivated by the fact that land use predictions 𝑌𝑖𝑡 are typically a

function only of contemporaneous remote sensing data, 𝑅𝑖𝑡 . If the process {𝑅𝑖𝑡 , 𝑆𝑖𝑡} satisfies the

HMM assumptions, then so must { 𝑓 (𝑅𝑖𝑡) , 𝑆𝑖𝑡} for any function 𝑓 .13 (Note that the observed

process {𝑌𝑖𝑡} does not necessarily follow a first-order Markov process.)

P𝑆𝑡 = 𝚼−1P𝑌𝑡 , provided that 𝚼 is invertible (Czaplewski, 1992). However, this approach suffers from the limitations
discussed in the Introduction and does not recover true transition probabilities.

12The results are based on Section 2 of Hu (2017). See also Hu (2008) for his seminal contribution, with a more
complete discussion and proofs, and Hu (2020) for a recent overview of econometric methods and applications to
models with latent variables and measurement error.

13To see why, note that for any random variable 𝑍 , if 𝑅𝑖𝑡 ⊥⊥ 𝑍 |𝑆𝑖𝑡 (in words, if 𝑅𝑖𝑡 is conditionally independent
of 𝑍 given 𝑆𝑖𝑡 ), it follows that 𝑓 (𝑅𝑖𝑡 ) ⊥⊥ 𝑍 |𝑆𝑖𝑡 for any function 𝑓 . In typical applications, the remotely-sensed data
𝑅𝑖𝑡 are complicated high-dimensional objects. In theory, we could fit an HMM using the process {𝑅𝑖𝑡 , 𝑆𝑖𝑡 }. We opted
for not doing so because the misclassification probabilities Pr[𝑌𝑖𝑡 |𝑆𝑖𝑡 ] can be represented by a 𝐾 × 𝐾 matrix, which is
a much simpler object than a continuous distribution over high-dimensional sensor data. Finally, note that in typical
annual classifications, one can make use of within-year time-series variation in remote-sensing data to classify annual
land uses; for such cases, we extend our notation allowing the vector 𝑅𝑖𝑡 to incorporate within-year remote sensor
covariates.
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There are plausible situations in which equation (2) may be violated. One possibility occurs

when misclassification probabilities are serially correlated; i.e., lagged values of (𝑌𝑖𝑡 , 𝑆𝑖𝑡) may be

useful in predicting current 𝑌𝑖𝑡 given current land use 𝑆𝑖𝑡 . This may happen, for example, when

researchers use past values of remote sensing data 𝑅𝑖𝑡 to classify current land use 𝑌𝑖𝑡 . Another

possibility is when true transitions may also depend on classified land uses, i.e., Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡 , 𝑌𝑖𝑡]

– possible, e.g., when policymakers take actions based on the observed states.14 Clearly, the

appropriate application of the HMM depends on the context.

Equation (2) limits the potential datasets for which an HMM correction is appropriate. In some

publicly available land cover datasets, such as Mapbiomas, ad hoc corrections have already been

applied based on the time series of classifications, as mentioned in the Introduction. In such cases,

it might not be reasonable to assume that misclassification probabilities do not depend on lagged

variables. However, even when such ad hoc correction has been applied, it may be possible to

obtain the raw data – we did this for our empirical application.

Useful Identities. Given the HMM setting, there are a series of identities that are helpful to

obtain the identification results. For any two random variables 𝑋,𝑊 , define the 𝐾 × 𝐾 matrix

M𝑋,𝑊 with elements given by the joint distribution Pr [𝑋 = 𝑠𝑙 ,𝑊 = 𝑠𝑘 ], with 𝑠𝑙 , 𝑠𝑘 ∈ S and

𝑙, 𝑘 = 1, ..., 𝐾 . Similarly, for any given 𝑦𝑡+1 ∈ Y, define the matrix M𝑦𝑡+1,𝑋,𝑊 , with elements

Pr [𝑌𝑖𝑡+1 = 𝑦𝑡+1, 𝑋 = 𝑦𝑙 ,𝑊 = 𝑦𝑘 ], as well as the diagonal matrix D𝑦𝑡+1 |𝑋 , with diagonal entries

Pr [𝑌𝑖𝑡+1 = 𝑦𝑡+1 |𝑋 = 𝑠𝑘 ].15

From the joint distribution of (𝑌𝑖𝑡 , 𝑌𝑖𝑡−1) we obtain

M𝑌𝑡 ,𝑌𝑡−1 = 𝚼M𝑆𝑡 ,𝑌𝑡−1 . (3)

14While we do not investigate the full extent of these possibilities here, we note that identification is possible for
some of these cases, involving a more complex Markov process for (𝑌𝑖𝑡 , 𝑆𝑖𝑡 ) and a more demanding set of identifying
assumptions, exploring the ideas in Section 2.5 of Hu (2017).

15As we allow the distribution of 𝑌𝑖𝑡 to vary by year, note that the time subscripts on 𝑦𝑡+1 ∈ Y serve to define the
distribution used for 𝑌𝑖𝑡+1.

12



Similarly, from the joint distribution of (𝑌𝑖𝑡+1, 𝑌𝑖𝑡) we get

M𝑌𝑡+1,𝑌𝑡 = 𝚼M𝑆𝑡+1,𝑆𝑡 𝚼
ᵀ, (4)

where the superscript ᵀ denotes transpose. And, from the joint distribution of (𝑌𝑖𝑡+1, 𝑌𝑖𝑡 , 𝑌𝑖𝑡−1), we

have for a given 𝑌𝑖𝑡+1 = 𝑦𝑡+1 ∈ Y,

M𝑦𝑡+1,𝑌𝑡 ,𝑌𝑡−1 = 𝚼D𝑦𝑡+1 |𝑆𝑡M𝑆𝑡 ,𝑌𝑡−1 . (5)

Identification and estimation of the HMM is based on (3)–(5). See Online Appendix A for a

derivation of these equations.

4.1 Identification of the Hidden Markov Model

Next, we outline the conditions needed to identify the Markov transition process Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡], the

marginal distribution Pr [𝑆𝑖𝑡] (including the initial distribution), and the misclassification probabil-

ities 𝚼 using at least three periods of data on 𝑌𝑖𝑡 .

The first two conditions were discussed above and we state them here for completeness.

Condition 1. The joint process {𝑌𝑖𝑡 , 𝑆𝑖𝑡} follows a hidden first-order Markov process, satisfying

equation (2).

Condition 2. 𝑌𝑖𝑡 and 𝑆𝑖𝑡 have the same support, i.e., Y = S.16

Next, we impose a mild restriction on observed classifications 𝑌𝑖𝑡 :

Condition 3. The matrix M𝑌𝑡 ,𝑌𝑡−1 has full rank, i.e., rank
(
M𝑌𝑡 ,𝑌𝑡−1

)
= 𝐾 .

16It is possible to extend the identification results to when the support of𝑌𝑖𝑡 has more points than the support of 𝑆𝑖𝑡 ;
i.e., when 𝑐𝑎𝑟𝑑 (Y) ≥ 𝑐𝑎𝑟𝑑 (S). To see how, note that we can first combine some values in the support of Y to obtain
a transformed 𝑌𝑖𝑡 with support Ỹ = S, then apply the identifying assumptions to the process (𝑌𝑖𝑡 , 𝑆𝑖𝑡 ) and identify
the parameters of the transformed process, and then “undo” the transformation and recover the entire process for the
original (𝑌𝑖𝑡 , 𝑆𝑖𝑡 ) – see Corollary 2.4.1 in Hu (2017). Though feasible, we do not exploit this possibility as Condition
2 seems reasonable for most applications.
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This condition is testable. If the land use classifications 𝑌𝑖𝑡 are sufficiently persistent, M𝑌𝑡 ,𝑌𝑡−1

may be strictly diagonally dominant (note that for persistent processes, diagonal elements of this

matrix will be larger than off-diagonal elements), and therefore full rank. This is plausible in land

use applications because converting land is typically costly, which induces persistence in the data.

Importantly, this condition implies that both matrices 𝚼 andM𝑆𝑡 ,𝑌𝑡−1 are invertible too (a fact that

we use below); see equation (3). As a word of caution, note that, in practice, the larger the set

of land uses considered (i.e., the larger the 𝐾), the less likely M𝑌𝑡 ,𝑌𝑡−1 will have full rank. That is

because with more types of land uses in a given data (some of which could be rare), the higher the

chances that some of them will not be observed in a time period, leading to a zero column (or row)

inM𝑌𝑡 ,𝑌𝑡−1 . Therefore, researchers using the HMM approach need to be careful when selecting the

set of land uses in practice.

Combining (3) and (5), we get

M𝑦𝑡+1,𝑌𝑡 ,𝑌𝑡−1M
−1
𝑌𝑡 ,𝑌𝑡−1

= 𝚼D𝑦𝑡+1 |𝑆𝑡 𝚼
−1. (6)

This is an eigenvalue-eigenvector decomposition of a matrix constructed entirely from the data,

i.e., fromM𝑦𝑡+1,𝑌𝑡 ,𝑌𝑡−1M−1
𝑌𝑡 ,𝑌𝑡−1

. The columns of 𝚼 are the eigenvectors. Because each column of 𝚼

must sum to one, the scale of the eigenvectors is fixed. The diagonal elements of D𝑦𝑡+1 |𝑆𝑡 are the

eigenvalues. The next two assumptions guarantee a unique eigenvalue-eigenvector decomposition.

The uniqueness of the decomposition means we can uniquely recover the misclassification proba-

bilities 𝚼 and the diagonal matrix D𝑦𝑡+1 |𝑆𝑡 from the joint distribution of the observed classifications

(𝑌𝑖𝑡+1, 𝑌𝑖𝑡 , 𝑌𝑖𝑡−1).

Condition 4. Pr [𝑌𝑖𝑡+1 = 𝑦 |𝑆𝑖𝑡 = 𝑠] ≠ Pr [𝑌𝑖𝑡+1 = 𝑦 |𝑆𝑖𝑡 = 𝑠′] for at least one 𝑦 ∈ Y whenever 𝑠 ≠ 𝑠′,

and 𝑠, 𝑠′ ∈ S.

Condition 4 assumes the eigenvalues are all distinct. This is testable: we only need to perform

the eigenvalue-eigenvector decomposition ofM𝑦𝑡+1,𝑌𝑡 ,𝑌𝑡−1M−1
𝑌𝑡 ,𝑌𝑡−1

and check it.17

17Condition 4 corresponds to Assumption 3 in Hu (2017). We take the function 𝜔(𝑦) defined in his assumption to
be the Dirac function.
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To interpret this condition, consider an example in which there are three land uses: forest,

pasture, and crops. Take the observed 𝑦 as forest. Suppose it is very likely to observe a forest

classification tomorrow (i.e. 𝑌𝑖𝑡+1 = forest) when today’s true land use is forest; moreover, suppose

it is very unlikely that we would observe forest tomorrow when today’s land use is pasture, and

even less likely to see forest tomorrow when today’s land use is crops (i.e., pasture and crops are

both persistent, but pasture is abandoned more often than cropland). In this case,

Pr [𝑌𝑖𝑡+1 = 𝑦 |𝑆𝑖𝑡 = forest] > Pr [𝑌𝑖𝑡+1 = 𝑦 |𝑆𝑖𝑡 = pasture] > Pr [𝑌𝑖𝑡+1 = 𝑦 |𝑆𝑖𝑡 = crops] ,

for 𝑦 = 𝑓 𝑜𝑟𝑒𝑠𝑡, and so Condition 4 is satisfied here.

In case Condition 4 is violated for some 𝑦, we can use another land-use classification 𝑦′ ≠ 𝑦

for which the condition is valid. If we find no such 𝑦, then identification is not guaranteed. When

Condition 4 holds for more than one value 𝑦, the model becomes overidentified.

Next we turn to the eigenvectors:

Condition 5. Pr [𝑌𝑖𝑡 = 𝑠∗ |𝑆𝑖𝑡 = 𝑠∗] > Pr [𝑌𝑖𝑡 = 𝑠 |𝑆𝑖𝑡 = 𝑠∗] for any 𝑠 ≠ 𝑠∗, and 𝑠, 𝑠∗ ∈ S.

Condition 5 fixes the order of the eigenvectors. It implies 𝑠∗ is the mode of the distribution

Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠∗]. In words, given that the true land use is 𝑠∗, the probability that the noisy measure

𝑌𝑖𝑡 equals 𝑠∗ is greater than the probability that𝑌𝑖𝑡 equals any other land use 𝑠 ≠ 𝑠∗. This condition is

satisfied when 𝚼 is strictly diagonally dominant – this is reasonable as accurate land use classifiers

(which is common in practice) should generate correct classifications well in excess of incorrect

classifications. (Note however that this condition is less likely to be satisfied when 𝐾 is large: the

greater the number of possible land uses, the less likely the correct classification 𝑠∗ will be the

modal outcome.)18

Next, given identification of the misclassification probabilities 𝚼 from the eigenvalue-

eigenvector decomposition (6) under Conditions 1–5, we identify the joint distribution Pr [𝑆𝑖𝑡+1, 𝑆𝑖𝑡]

18Condition 5 corresponds to Assumption 4.2 in Hu (2017). Alternatively, one could instead assume the misclassi-
fication probabilities Pr [𝑌𝑖𝑡 = 𝑦 |𝑆𝑖𝑡 = 𝑠] are decreasing in 𝑠 for some 𝑦; this would correspond to Assumption 4.1 in
Hu (2017) and it also pins down the ordering of the eigenvectors.
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under the assumption that𝚼 is time-invariant. For completeness, we impose this condition explicitly

(and discuss its relaxation in Remark 1 below):

Condition 6. Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡+1] = Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡] , for all 𝑡.

Given Condition 6 and equation (4), we obtain

M𝑆𝑡+1,𝑆𝑡 = 𝚼−1M𝑌𝑡+1,𝑌𝑡 (𝚼ᵀ)−1 , (7)

which implies identification ofM𝑆𝑡+1,𝑆𝑡 , and hence of both Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡] and Pr [𝑆𝑖𝑡]. The argument

above leads to the following proposition:

Proposition 1. (Theorem 1, Hu (2017)). Suppose Conditions 1–6 hold. Then, the joint distribution

of the observed classifications (𝑌𝑖𝑡+1, 𝑌𝑖𝑡 , 𝑌𝑖𝑡−1) uniquely identifies Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡], Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡], and

Pr [𝑆𝑖𝑡].

Remark 1. (Time-varying misclassifications.) It is plausible to consider misclassification proba-

bilities that do not vary over time when there are no common shocks (due to, say, meteorological

conditions) affecting atmospheric noise, nor technical difficulties requiring satellite maintainance

that may affect the quality of the raw data, nor substantive technical changes to the pre-processing

and classification operations generating 𝑌𝑖𝑡 during the sampling period. However, when some of

these conditions fail, misclassification probabilities may change over time – a possibility that we

can accommodate in our framework.

Formally, denote the time-varying matrix by 𝚼𝑡 . Equation (6) then becomes

M𝑦𝑡+1,𝑌𝑡 ,𝑌𝑡−1M−1
𝑌𝑡 ,𝑌𝑡−1

= 𝚼𝑡 D𝑦𝑡+1 |𝑆𝑡 𝚼
−1
𝑡 , which means that we still need just three time periods to iden-

tify the misclassification probabilities. We also need three time periods to identify the marginal dis-

tribution Pr [𝑆𝑖𝑡] – see equation (1). However, equation (7) becomesM𝑆𝑡+1,𝑆𝑡 = 𝚼−1
𝑡+1M𝑌𝑡+1,𝑌𝑡

(
𝚼ᵀ𝑡

)−1,
implying that we now need 𝑇 ≥ 4 periods of data to identify M𝑆𝑡+1,𝑆𝑡 (we need 𝑡 + 1, 𝑡, and 𝑡 − 1

to identify 𝚼𝑡 and 𝑡, 𝑡 + 1, and 𝑡 + 2 to identify 𝚼𝑡+1). Clearly, 𝚼1 and 𝚼𝑇 are not identified, and

neither are the transition probabilities in the first and last time periods.
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4.2 Estimators for the HMM Correction

We consider two estimators for the HMM correction: a minimum distance (MD) estimator and a

maximum likelihood (ML) estimator. The estimators offer complementary advantages: we find the

ML estimator is more precise while the MD estimator is computationally faster.

As mentioned previously, we assume the researcher has access to a panel data of classifications

{𝑌𝑖𝑡 : 𝑖 = 1, ..., 𝑁; 𝑡 = 1, ..., 𝑇}. Following Conley (1999), we allow (𝑌𝑖𝑡 , 𝑆𝑖𝑡) to be a random field

– i.e., we let an observation be a realization of a random process at a point in a Euclidean space.

In the temporal dimension, we assume each point follows the hidden first-order Markov process

discussed in the previous section; in the cross-sectional dimension, we assume weak dependence

– that is, as the spatial distance between pixels increases, the outcomes (𝑌𝑖𝑡 , 𝑆𝑖𝑡) and (𝑌 𝑗 𝑡 , 𝑆 𝑗 𝑡), for

𝑖 ≠ 𝑗 , become essentially independent.19

4.2.1 Minimum Distance Estimator

In principle, we can estimate the misclassification probabilities and the joint distribution of 𝑆𝑖𝑡 using

a plug-in estimator based on equations (6)–(7). However, the eigenvalue-eigenvector decomposition

may result in estimated probabilities that are negative or greater than one in some data sets. In our

experience, this is more likely to happen when the sample size is small and the true parameters

are close to one (e.g. transition probabilities of 0.99). For this reason, it is better to implement a

constrained minimum distance estimator (as suggested by Hu, 2017, in his Section 2.6).

For convenience, we denote M𝑆𝑡+1,𝑆𝑡 = M𝑡 for all 𝑡, and collect all matrices into M =

19Specifically, we assume the sample consists of realizations of the random variables at a collection of locations
inside a sample region. As in Conley (1999), we assume the sample region grows in area as the sample size increases
to ensure that the vector indexing cross-sectional dependence is not superfluous. (That is in contrast to an “infill”
asymptotics, in which case observations get increasingly dense in a fixed region, violating weak dependence.) We
assume (𝑌𝑖𝑡 , 𝑆𝑖𝑡 ) satisfies the mixing condition stated in Section 3.1.3 in Conley (1999) – see also his assumptions A1,
A3, and B1–B3. These assumptions allow one to make use of Law of Large Numbers applied to weakly dependent
data to obtain consistency of the estimators. Similarly, inference can be based on central limit theorems for stationary
and mixing random fields on regular lattices, as developed, e.g., by Bolthausen (1982).
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{M𝑡 : 𝑡 = 1, ...𝑇 − 1}, where 𝑇 ≥ 3. Define the following functions, for some 𝑦 ∈ Y,

𝑔1𝑦𝑡 (M,𝚼) =

M𝑦𝑡+2,𝑌𝑡+1,𝑌𝑡M
−1
𝑌𝑡+1,𝑌𝑡

𝚼 − 𝚼D𝑦𝑡+2 |𝑆𝑡+1

 ,
𝑔2𝑡 (M,𝚼) =

M𝑌𝑡+1,𝑌𝑡 − 𝚼M𝑡𝚼
ᵀ
 , (8)

where ‖·‖ is a matrix norm. Notice that 𝑔1𝑦𝑡 is analogous to equation (6) with slight rearrangement,

while 𝑔2𝑡 is analogous to equation (7). So, under the true joint distributions and misclassification

probabilities,M and𝚼, respectively, we have that 𝑔1𝑦𝑡 = 𝑔2𝑡 = 0. (We omitD𝑦𝑡+2 |𝑆𝑡+1as an argument

of 𝑔1𝑦𝑡 because it is a function of 𝚼 andM𝑆𝑡+2,𝑆𝑡+1 .)

Let 𝑔1 be a vector that stacks 𝑔1𝑦𝑡 for all 𝑡 ∈ {1, . . . , 𝑇 − 2}, and let 𝑔2 be a vector that stacks 𝑔2𝑡

for all 𝑡 ∈ {1, . . . , 𝑇 − 1}. Define the vector 𝑔 = (𝑔ᵀ1 , 𝑔
ᵀ
2 )
ᵀ, and consider the population criterion

function 𝑄 (M,𝚼) = 𝑔 (M,𝚼)ᵀW𝑔 (M,𝚼) , whereW is a symmetric positive-definite weighting

matrix. By construction, 𝑄 (M,𝚼) ≥ 0, and the true matrices (M,𝚼) are the unique solution to

the following minimization problem:

min
M,𝚼

𝑔 (M,𝚼)ᵀ W 𝑔 (M,𝚼) , (9)

subject to each matrix entry being in [0, 1] and probabilities summing up to one.

The minimum distance estimator is the sample analog of (9):

(M̂, �̂�) = argmin
M,𝚼

�̂� (M,𝚼)ᵀ Ŵ �̂� (M,𝚼) , (10)

subject to the same constraints as above, where �̂� is a vector with elements defined in the same way

as in (8), but replacing M𝑦𝑡+1,𝑌𝑡 ,𝑌𝑡−1 , M𝑌𝑡 ,𝑌𝑡−1 , and M𝑌𝑡+1,𝑌𝑡 by their respective frequency estimators

M̂𝑦𝑡+1,𝑌𝑡 ,𝑌𝑡−1 , M̂𝑌𝑡 ,𝑌𝑡−1 , and M̂𝑌𝑡+1,𝑌𝑡 , and Ŵ is a data-dependent symmetric positive-definite weighting

matrix that converges in probability toW.20 This is a standard minimum distance estimator defined

20When Condition 4 is satisfied for more than one value of 𝑦 ∈ Y, the vector 𝑔1𝑡 may be augmented accordingly.
When that happens, or when 𝑇 ≥ 4, the model becomes overidentified. When the panel data is unbalanced (assuming
that the data is missing-at-random), we only use the observations for which we have (i) two consecutive periods to
estimateM𝑌𝑡 ,𝑌𝑡−1 andM𝑌𝑡+1 ,𝑌𝑡 , and (ii) three consecutive periods to estimateM𝑦𝑡+1 ,𝑌𝑡 ,𝑌𝑡−1 .
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over a finite-dimensional parameter space: under i.i.d. data and standard regularity conditions, the

estimator is consistent and asymptotically normal (Newey and McFadden, 1994). We expect that

the same asymptotic properties can be established using arguments similar to Conley (1999). As

usual, inference must be adjusted when parameters are at or near the boundary (Politis and Romano,

1994; Andrews, 1999, 2000).

In general, if we estimate a model with 𝐾 hidden states from𝑇 years of data, we have to optimize

over 𝐾 (1 + 𝐾𝑇) parameters subject to 𝑇𝐾 + 1 equality constraints and boundary conditions for

every parameter ensuring it is in [0,1]. For instance, when there are 𝐾 = 2 states and 𝑇 = 3 time

periods, we have 7 parameters to estimate in total.21

4.2.2 Maximum Likelihood Estimator

Next, we consider a maximum likelihood estimator. Let Pr [𝑌𝑖] be the joint distribution of 𝑌𝑖 =

(𝑌𝑖1, ..., 𝑌𝑖𝑇 ) for a given point 𝑖. The pseudo-log likelihood function is

𝐿 =

𝑁∑︁
𝑖=1
ln Pr [𝑌𝑖] , (11)

where the likelihood function for observation 𝑖 integrates-out the hidden states:

Pr [𝑌𝑖] =
∑︁
𝑠1∈S

· · ·
∑︁
𝑠𝑇 ∈S

Pr [𝑆𝑖1 = 𝑠1] Pr [𝑌𝑖1 |𝑆𝑖1 = 𝑠1]
𝑇∏
𝑡=2
Pr [𝑆𝑖𝑡 = 𝑠𝑡 |𝑆𝑖𝑡−1 = 𝑠𝑡−1] Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠𝑡] .

(12)

The ML estimator chooses the initial distribution Pr [𝑆𝑖1], the transition probabilities for 𝑆𝑖𝑡 , and

the misclassification probabilities that maximizes the function 𝐿. As is well-known, the ML

estimator is consistent, asymptotically normal, and asymptotically efficient, under i.i.d. data and

standard regularity conditions (Newey and McFadden, 1994). As before, we expect the asymptotic

properties to extend to spatially weakly dependent data following the arguments developed by

21The total number of parameters in 𝑇 years, before accounting for constraints, is 𝐾 (corresponding to the initial
distribution), plus (𝑇 − 1) 𝐾2 (corresponding to (𝑇 − 1) transition matrices), and 𝐾2 (the misclassification matrix).
The number of equality constraints is 1 (for the initial distribution), plus (𝑇 − 1) 𝐾 (for the 𝑇 − 1 transition probability
matrices), and 𝐾 (for the time-invariant misclassification probabilities).
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Conley (1999). Because maximizing 𝐿 directly is difficult in practice, we follow the literature and

use the expectation-maximization (EM) algorithm (Dempster et al., 1977; van Handel, 2008) – see

Online Appendix C for details.

While the ML estimator enforces Conditions 1 and 2 by construction (as well as Condition 6,

whenwe assumemisclassification probabilities are time-invariant), it does not imposeConditions 3–

5 in the estimation routine. That is in contrast to the MD estimator, which imposes all identification

conditions explicitly. Although feasible, imposing these conditions is not necessary in the ML

estimation procedure because, when they hold in the data generating process (and so can be treated

as regularity conditions), the ML estimator will converge in probability to the true transition and

misclassification probabilities, which satisfy these conditions.

Remark 2. (Monte Carlo Simulations.) In Online Appendix D, we present our Monte Carlo

study. Here, we highlight the main take-aways. First, we find that the HMM approach estimates

transition probabilities and misclassification probabilities accurately, including cases where the

transition probabilities are time-varying. Second, both MD and ML estimators outperform a

standard frequency estimator that ignores misclassifications, which tends to overestimate transition

rates when they are persistent. Third, we find important trade-offs between the two estimators.

While the MD estimator is substantially faster, the ML estimator performs better in terms of mean-

square errors and is less likely to result in estimates of transition probabilities that are at the edge

of the unit interval [0, 1]. Fourth, when using the (fast) MD estimator as the initial value for the

(more accurate) ML estimator, the combined approach is about 10 times faster on average than the

ML estimator alone with random initialization. ML initialized with the MD estimate also results

in mean-square errors similar to the ML estimator, so this approach has much to recommend it.

Fifth, when we allow misclassification probabilities to depend on past values of (𝑌𝑖𝑡 , 𝑆𝑖𝑡), violating

equation (2), our MD and ML estimators are biased (as expected), but they are substantially less

biased than the frequency estimator ignoring errors in classifications. Finally, we find that when

the ML estimates of transition rates are used as the dependent variable in a simple linear treatment

effects regression analysis, one obtains unbiased estimates of the treatment effects. In contrast,
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using a frequency estimator leads to biased estimates of the impact of the treatment.

5 Validation Exercise Using Land Cover Data

We now investigate the performance of the HMM approach using unique validation data from the

Brazilian Agricultural Research Corporation (Embrapa).22 We outline the data, the implementation

of our methodology, and the validation results.

5.1 Ground-Truth and Remote-Sensing Data

The ground-truth data contain information on land use at 409 spatial points observed annually

from 2006 to 2010, in the state of Mato Grosso, Brazil. The state of Mato Grosso has attracted

considerable interest from researchers and policy makers both because it is a major center of agri-

cultural production within Brazil’s Legal Amazon (a bio-administrative unit covering the Brazilian

Amazon biome) and because of the rapid land use change there due to agricultural development.

The field data were collected from private farms within 14 municipalities in the most intensely

cropped region of central Mato Grosso; see the study area and the sample points in Figure E1 of

the Online Appendix.23 The data is unprecedented in spatial and temporal coverage for the state –

and arguably in general – and provide a unique opportunity to test the performance of the HMM

correction in practice because they allow us to observe true land use transition probabilities and

compare them to our estimates. Further, they also allow us to compare our HMM estimates of

misclassification probabilities with a direct estimate of misclassifications Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡].

Embrapa’s land cover data include various land use categories, but the vast majority of points

are either in crops or pasture. We therefore consider two land uses, S = {crops, pasture}. A

22We are grateful to Alexandre Camargo Coutinho and Daniel De Castro Victoria, who generously shared their data
with us.

23The data were collected via farmer or farm manager interviews. The cropping practices were recorded for each
individual sites and integrated into a Geographic Information System (GIS) to be combined with the MODIS remote-
sensing data (see more below). The area covered extends from the coordinate (59𝑜25′14′′𝑊, 14𝑜2′39′′𝑆) [lower left]
to the point (54𝑜25′19′′𝑊, 11𝑜42′16′′𝑆) [upper right]. A total of 40 farmers or farm managers were interviewed as
research participants. For more details, see Coutinho et al. (2011) and Brown et al. (2013).

21



small number of points do not fit into either of these categories (e.g. points classified as natural

vegetation); we drop these observations. Ultimately, we have 403 unique spatial points, each point

observed for one to five years in 2006–2010 (resulting in an unbalanced panel).24

We merge the ground truth land use data with remote-sensing data. Specifically, we use

measurements from the sixteen-day composite Terra MODIS 250m.25 MODIS data provide mea-

surements over time of five variables that we observe for each pixel 𝑖: the reflectance of (i) near

infrared (NIR), (ii) middle infrared (MIR), (iii) red, and (iv) blue, as well as (v) the enhanced

vegetation index (EVI). Given that MODIS collects information for each pixel every sixteen days,

each variable is recorded 23 times per year. In total, we have 115 MODIS covariates per year –

these correspond to the vector of variables 𝑅𝑖𝑡 discussed previously in Section 3. We merge the

MODIS data with the Embrapa ground-truth data considering the September-to-August harvest

years for consistency. In this way, the 2006 ground-truth data, for instance, are merged with sensor

data from September 2005 to August 2006.

5.2 Generating Land Use Classifications

After merging the ground truth and the MODIS datasets, we construct the satellite-based classi-

fications, {𝑌𝑖𝑡}. To that end, we randomly split the panel data into two disjoint sets. The first

(“training set”) is used to train a machine learning classifier. We use a gradient-boosted ensemble

of classification trees, commonly referred to as a GBM (Hastie et al., 2009, Chapter 10), to predict

the land cover using the MODIS covariates.26 With the second set of data (“test set”), we obtain the

out-of-sample predictions𝑌𝑖𝑡 = 𝑓 (𝑅𝑖𝑡) based on the GBM classifier. The out-of-sample predictions

24Of the 403 points, 63 are missing ground truth data in one or more years. Overall, we observe ground-truth land
use for 93.5% of point-years. In the estimation procedure, we assume the missing data is missing at random.

25More precisely, theMOD13Q1 (Collection 5), with spatial resolution of 250meters and 16-day composite interval,
obtained from the United States Geological Survey’s Land Processes Distributed Active Archive Center (LP DAAC).
We used one MODIS tile (h12v10), which covers the entire field study area. This is consistent with the analysis in
Brown et al. (2013).

26The purpose of boosting is to apply “weak" classification algorithms sequentially to produce a “strong" classifier.
The GBM uses a sequence of decision trees in which each individual tree tries to recover the loss (i.e., the difference
between actual and predicted values) obtained by the previous ones in the sequence. The loss function is minimized
using a gradient descent algorithm. To select the optimal number of trees, we follow standard practice and use
cross-validation. See Chapter 10 of Hastie et al. (2009) for recommendations on tuning GBMs.
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in the test set constitute our land use classification panel data, {𝑌𝑖𝑡 : 𝑖 = 1, ..., 𝑁, 𝑡 = 1, ..., 𝑇}.

The training set contains 60 cross-sectional points (286 point-years) and the test set contains

343 points (1715 point-years).27 We opt for a larger fraction of the Embrapa data set to be part of

the test set in order to reflect the typical scenario faced by applied researchers using satellite-based

data: they will typically have access to large panels of machine-learning-based classifications.

5.3 Implementing the HMM Correction

We consider two hidden Markov model specifications: a restricted model with time-invariant

transition probabilities, and another in which the transitions are allowed to vary over time. In

both cases, we hold the misclassification probabilities to be the same over time. We estimate the

HMM parameters using both the MD and the ML estimators.28 The frequency estimator (ignoring

misclassifications) is computed directly from the data, based on sample frequencies. Confidence

intervals are calculated based on subsampling, as suggested by Politis and Romano (1994) and

Andrews (1999, 2000) when parameters are at or near the boundary.29

5.4 Validation Results

The out-of-sample performance of our GBM classifications is shown in Table 1. This table presents

the so-called “confusion matrix,” which tabulates the test points according to their ground truth

class and predicted class. It also allows us to estimate the misclassification probabilities 𝚼 directly.

The GBM’s land use predictions are fairly accurate given the size of the training set and the

difficulty of the classification problem. Overall, it correctly predicts land use for 92% of the test

points, which is in the range of acceptable accuracies (see Section 2). For crops, the fraction of

27Our results are similar when we select different sizes for the training set (e.g., 48 or 80 cross-sectional points).
28For the MD estimator, we use the identity matrix as the weighting matrixW, and we use both 𝑦𝑡+1 = 𝑐𝑟𝑜𝑝𝑠 and

𝑦𝑡+1 = 𝑝𝑎𝑠𝑡𝑢𝑟𝑒, as they both satisfy Condition 4.
29We implement 200 replications of a standard i.i.d. subsampling, resampling 250 spatial points over the sample time

period. (We acknowledge, though, that this might not be completely accurate in the presence of spatial dependence.)
The 95% confidence intervals are calculated as [�̂� − 𝛿0.025, �̂� + 𝛿0.975], where �̂� denotes the parameter estimate, and
𝛿𝑞 is the quantile 𝑞 of the subsampling distribution. We do not implement bootstrap procedures because they are
inconsistent when parameters are at or close to the boundary (Andrews, 2000). We treat the GBM parameters as fixed
and subsample only on the test data, noting that researchers may not have access to the training data in practice.
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correctly predicted (or the recall rate) is 92.6% (i.e., Pr[𝑌𝑖𝑡 = crops | 𝑆𝑖𝑡 = crops] = 0.926), while

the recall for pasture is 79.5% (i.e., Pr[𝑌𝑖𝑡 = pasture | 𝑆𝑖𝑡 = pasture] = 0.795). This implies that

𝚼 is diagonally dominant, as required for identification of the HMM approach (see Condition 5

in Section 4.1). This increases our confidence that the HMM is identified when applied to the

Embrapa test data.30

Figure 1 shows the estimated results for the frequency estimator and the restricted HMM (i.e.,

imposing time-invariant transition probabilities). The ground-truth data indicate that the probability

of switching from cropland to pasture in the following year equals 0.7%, while the probability of

maintaining cropland is 99.3%. The ground-truth probability of switching from pasture to crops is

13.8%, and the probability of maintaining pasture land is 86.2%. So, both land uses are persistent

over time, and cropland is more persistent than pasture.

The frequency estimator estimates transitions from crops to pasture as 6.2%, and transitions in

the opposite direction, from pasture to crops, as 48.2%. These transitions are substantially biased:

the first one is roughly 9 times higher than the truth, while the second is 3 times higher than the

correct transition. In contrast, the HMM estimates for the transitions probabilities (using both

MD and ML estimates) are approximately 1.2% for cropland to pasture and 6.5% from pasture to

cropland, which are substantially closer to the true ground-truth transition probabilities than the

frequency estimates. The confidence intervals in the figure indicate that these results hold even

after accounting for sampling uncertainty. This is consistent with the Monte Carlo results discussed

in the Online Appendix: the frequency estimator tends to overestimate switching rates when land

use is persistent.

Figure 2 is analogous to Figure 1, but shows results for the unrestricted model, i.e. allowing

for time-varying transition probabilities. The results are similar to the time-invariant case: the

frequency estimator provides excessive land use changes, while the HMM corrections result in

point estimates that are closer to the true transitions. That is the case even when true transitions are

exactly zero, as in the first year of the data, 2006–2007. We also find some evidence that transition

30While not presented here, we find that the (testable) Conditions 3 and 4 are also satisfied in the data.
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rates can vary over time (though not substantially in this data set).

Next, we turn to the HMM estimates of the misclassification probabilities; Figure 3 shows the

results computed using MD and ML for both the restricted and unrestricted models. The point

estimates are all reasonably close to the true misclassification probabilities obtained from the out-

of-sample confusion matrix for the GBM predictions (see the last column in Table 1.) This is

notable since the HMM is estimated using only panel data of observed classifications {𝑌𝑖𝑡}, with

no information on true land uses {𝑆𝑖𝑡}.

Finally, we generate themost likely sequence of land uses for each point in the test set based on the

HMMmaximum likelihood estimates (using the so-called “Viterbi” algorithm; seeOnlineAppendix

C) and reclassified the data points accordingly. Figure 4 shows that correcting classifications in

this way increases the overall accuracy of the land use classifications to 96%, improving on our

original classifier’s accuracy of 92%.

6 Empirical Exercise: Carbon Stocks in the Atlantic Forest

We now investigate an application of the HMM approach by estimating the value of the carbon

stocks in the Brazilian Atlantic Forest and how they might change over time if deforestation were

curtailed. These carbon stocks represent part of the social costs of deforesting an area, and so

quantifying them provides a crucial input to environmental policy analysis. Given that the carbon

stock varies with the age of the forest, it is critical to obtain an accurate measure of the forest age,

which in turn can be estimated based on transition rates between forest and non-forest; the HMM

approach allows the researcher to obtain accurate measurements of these important transition rates.

We also use the HMM approach to compute the value of the carbon stock by 2040 if deforestation

is completely eliminated between 2020 and 2040.

The Atlantic Forest is a region of approximately 1.4 million square kilometers, it occupies

approximately 15% of the Brazilian territory (stretching from the northeastern to the southern

regions), and it accounts for about 70% of the country’s population and about 80% of the national
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gross domestic product. It has suffered centuries of exploitation and, as a result, it now contains

only an estimated 30% of the original native forest cover (Rosa et al., 2021). It also hosts one of the

world’s most diverse and threatened tropical forest on the planet.31 Given that the Atlantic Forest

is a priority hot spot for biodiversity conservation, and is a tropical forest storing large amounts of

carbon on the ground, it has been the focus of many conservation and restoration policy initiatives

(Brancalion et al., 2016). Indeed, conserving this area is an important component of the country’s

National Determined Contribution to the Paris Climate Agreement.32

6.1 Data and Implementation

We use data from the Mapbiomas (Collection 5.0), an initiative that has produced annual land cover

time series based on 30 meters resolution Landsat satellite data.33 It covers the whole Brazilian

territory from 1985 through the present and provides an unprecedented tool for understanding forest

dynamics – consistent monitoring of forest dynamics in the Atlantic Forest was not possible until

the creation of the MapBiomas project in 2015.

The data for the Atlantic Forest includes a total 7.9 billion pixels observed from 1985 to 2020;

Figure E2 in the Online Appendix presents a map with the data points. Mapbiomas considers

several land cover classifications that are generated in each year using the random forest machine

learning classification algorithm available in Google Earth Engine (Gorelick et al., 2017). We

aggregate these land covers into three states: forest, deforested, and others.34 In the notation of the

paper, we treat these aggregated MapBiomas classifications for a given year and pixel as 𝑌𝑖𝑡 .

31The region harbors roughly 20,000 plant species, more than 1400 species of terrestrial vertebrates, and thousands
of invertebrate species, many of which are endemic – and many of which are endangered (Laurance, 2009).

32For more details, see http://www.mma.gov.br/images/arquivos/florestas/planaveg_plano_
nacional_recuperacao_vegetacao_nativa.pdf.

33Marcos Reis Rosa generously shared with us the MapBiomas data, for which we are extremely thankful.
34We combine savanna, grassland and forest from the raw data into a “forest” classification; we define the agri-

culture/pasture raw classifications as a “deforested” classification; and we combine wetlands, sand, rocky outcrop,
and other non-forest classifications into an “other” classification. We allow for transitions between all of these states.
We use Mapbiomas’ random forest classifications generated year by year and that are prior to the application of the
post-classification filters and map integration (after which the final classifications are obtained and that are publicly
available online). Post-classification filters apply spatial and temporal filters. Map integration apply a set of specific
hierarchical prevalence rules to solve for potential conflicting classifications. For details, see Souza et al. (2020).
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We split the biome into “tiles,” each containing 1000 x 1000 pixels and covering an area of

roughly 900 square kilometers. We exclude tiles where over 90% of the pixels are missing or over

50% of the land is water or sand. The HMM parameters are estimated separately for each tile;

to ease computational burden, we randomly select 1% of the pixels within each of these tiles for

estimation. (For the tiles where only two of the three aggregated classes are present in the observed

data, we estimate a two state model.) Following our Monte Carlo study, we first estimate the HMM

parameters using the (fast) MD estimator and then use these parameter estimates as starting values

for the (more accurate) ML estimator. We exclude from the final results the tiles for which we

obtain estimates for the misclassification probability matrix 𝚼 that are not diagonally dominant,

since that violates the assumptions underlying our procedure. In total, we run estimates for 1,174

tiles, roughly 75% of the Atlantic Forest. (For our counterfactual simulations, we assume that the

forest age and transitions for this 75% is equal to the other 25%.)

To calculate the carbon stocks, we first compute the most likely land use path for each pixel,

given the estimated HMM parameters for each tile. We do so in order to distinguish between older

and newer forests. Specifically, we define the forest age as the number of years that the pixel has

been classified as forest since the last time it was classified as deforested; for pixels that were never

deforested, the age is greater than or equal to 32, which is the length of our panel data.35 Then we

make use of the cross-sectional carbon map developed by Englund et al. (2017) for the year 2017,

and regress the carbon stock on the forest age and a forest indicator to generate an expected carbon

stock for each pixel of a given forest age or non-forest.36 We also translate the amount of the carbon

stock into dollar values, using estimates of the social cost of carbon from the Interagency Working

Group on Social Cost of Greenhouse Gases, United States Government (2021). We compare the

estimated transition processes and carbon values described above with the corresponding results

based on the raw classifications. For more details see Section E.2 of the Online Appendix.

Finally, for our counterfactual exercise, we treat the HMM-based classifications in 2020 as

35Using the paths implied by the HMM parameters, in 2017, 62% of the forested areas were at least 32 years old.
36This carbon map was specifically designed to provide accurate measures of above ground carbon for Brazil by

combining information from other carbon maps and a detailed map of land use changes.
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“truth” and simulate the Markov process forward from 2021 to 2040 under two scenarios. Our

baseline scenario assumes that, within each tile, deforestation will remain constant at its 2020 level

until 2040. Our “no-deforestation” scenario assumes that there will be no deforestation from 2020

to 2040.

6.2 Results

Figure 5 shows the evolution of the deforestation rate, the reforestation rate, and the fraction of land

that is forested from 1986 to 2020, using the Mapbiomas raw data and the estimates from the HMM

approach.37 As expected, the raw data exhibits excessive transitions: the raw deforestation and

reforestation rates are typically roughly three times the rates obtained under the HMM. The HMM

correction therefore suggests that there should be less carbon emissions from deforestation but less

carbon sequestration from regrowth than the raw data indicate. The substantial difference in the

estimated rates is apparent despite the fact that the fractions of forested land are similar between the

HMM and raw estimates, oscillating between 29% and 31.5% over time. (The HMM forest shares

are around 0.5 percentage points above the raw data shares.)

These results illustrate that, even though uncorrected land use classifiers can generate reasonable

estimates of the level of a given land cover in a given year, the corrected and uncorrected approaches

will yield very different results for applications where land use transitions and/or the age distribution

is important. In Online Appendix Figure E16, we show the difference in the age distribution of the

forest between the raw data and the HMM-based classifcations. Consistent with Figure 5, we find

that the raw data generate forests that are excessively young in light of the high deforestation and

reforestation rates.

Next, we focus on the differences in the carbon stocks. Table 2, Panel A, presents the overall

amount and value of the carbon stocks in 2020, the last year for which we have data. The HMM

approach estimates approximately 2.8 billion tons of carbon on the ground, corresponding to a total

37For each year, we take the average over all of the tiles, weighting the deforestation rates by the share of land that
is forest and the reforestation rate by the fraction of land that is not.
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social value of $774 billion (assuming a social cost of carbon of $76 per ton of CO2).38 If instead

we use the forest age implied from the raw data, we obtain an estimate of just 2.33 billion tons of

carbon, which translates into $666 billion. Therefore, there is a $110 billion difference in the value

of the carbon stock that results from the differences in the implied age distribution of the forest in

the raw and HMM-based classifiers.

Finally, we simulate forward up to 2040 the deforestation and reforestation processes under

the baseline and the “no-deforestation” scenarios. Both scenarios are based on the corrected age

distribution for 2020 derived from the HMM approach. Table 2, Panel B, shows the results. We

find that eliminating all deforestation would preserve 270 million tons of carbon on the ground,

which is equivalent to a social benefit of approximately $100 billion dollars.39

7 Conclusion

Remotely sensed data have proven useful in the study of a variety of important phenomena, including

the pollution incidence, urbanization, land use change, and the evolution of biodiversity. In this

paper, we show how econometric tools can be used to improve the measurement of remotely sensed

transitions, such as rates of land use change. Relying on a set of assumptions that can be analyzed

on a case-by-case basis, the method avoids the need for ground truth data. In the context of Brazilian

land use change, we find the HMM correction performs well and makes an important difference in

measured rates of land use change.
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GBM Classification (𝑌𝑖𝑡) Fraction Correctly Predicted (Recall)

Embrapa Data (𝑆𝑖𝑡) Crops Pasture Total
Crops 1409 112 1521 0.926
Pasture 15 58 73 0.795
Total 1424 170 1594

Table 1: Confusion Matrix based on Embrapa Validation Data

35



Panel A: Carbon Stock and Social Value of Forest in 2020
Measurement Carbon Stock (billion tons) Social Value (billion dollars)
HMM-Viterbi 2.78 774.35
Raw Data 2.39 666.50

Panel B: Carbon Stock and Social Value in 2040
Scenario Carbon Stock (billion tons) Social Value (billion dollars)
Baseline 2.87 1085.62
No Deforestation 3.14 1185.71

Table 2: Carbon Stock and Social Value of Forest
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Figure 1: Time-invariant Transition Probabilities – Embrapa Validation Data

Note: Ground Truth data are the observed transition probabilities in the Embrapa test set, the Frequency estimator uses
the GBM based land use classifications to estimate transitions, while Min Dist and Max Likelihood are the minimum
distance and maximum likelihood HMM estimators for the transition rates. Error bars represent 95% confidence
intervals based on subsampling. The results shown in this figure combine all years in the Embrapa test set, i.e. they
assume time-invariant transition probabilities.
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Figure 2: Time-varying Transition Probabilities – Embrapa Validation Data

Note: Ground Truth data are the observed transition probabilities in the Embrapa test set, the Frequency estimator uses
the GBM based land use classifications to estimate transitions, while Min Dist and Max Likelihood are the minimum
distance and maximum likelihood HMM estimators for the transition rates. Error bars represent 95% confidence
intervals based on subsampling. The results shown in this figure combine assume time-varying transition probabilities.
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Figure 3: Misclassification Probabilities – Embrapa Validation Data

Note: Ground Truth corresponds to the misclassification probabilities from the “confusion matrix" comparing the
Embrapa test set points and the GBM predictors. The Min Dist and Max Likelihood correspond to the minimum
distance and maximum likelihood HMM estimates of the misclassification probabilties. Error bars represent 95%
confidence intervals based on subsampling. The top panel presents the results based on the restricted model with time-
invariant transition probabilities; and the bottom figure, the misclassifications based on the model with time-varying
transition probabilities.

39



Figure 4: Classification Accuracy of GBM and HMM-Viterbi methods in the Embrapa Validation Data

Note: GBM corresponds to the accuracy (i.e, the fraction of correctly predicted points) in the test set of the GBM
classifier. The GBM with Time Homogeneous HMM Correction (Viterbi) and the GBM with Time Varying HMM
Correction (Viterbi) correspond to the accuracy of the classifications in the test set based on the Viterbi method,
after applying the HMM (maximum likelihood estimator) correction assuming time-homogeneous and time-varying
transitions, respectively.
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Figure 5: Atlantic Forest Trends Over Time
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Online Appendix

A Mathematical Derivation of Useful Identities

Under the HMM assumptions, and by the law of total probability, the joint distribution of (𝑌𝑖𝑡 , 𝑌𝑖𝑡−1)

satisfies

Pr [𝑌𝑖𝑡 , 𝑌𝑖𝑡−1] =
∑︁
𝑠∈S
Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠] Pr [𝑆𝑖𝑡 = 𝑠,𝑌𝑖𝑡−1] . (A1)

Similarly, the joint distribution of (𝑌𝑖𝑡+1, 𝑌𝑖𝑡) is such that

Pr [𝑌𝑖𝑡+1, 𝑌𝑖𝑡] =
∑︁
𝑠′∈S

∑︁
𝑠∈S
Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡+1 = 𝑠′] Pr [𝑆𝑖𝑡+1 = 𝑠′|𝑆𝑖𝑡 = 𝑠]

×Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠] Pr [𝑆𝑖𝑡 = 𝑠]

=
∑︁
𝑠′∈S

∑︁
𝑠∈S
Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡+1 = 𝑠′] Pr [𝑆𝑖𝑡+1 = 𝑠′, 𝑆𝑖𝑡 = 𝑠] Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠] , (A2)

where the first equality follows from the law of total probability and the HMM assump-

tion (i.e., equation (2) in the main text); and the second equality uses the fact that

Pr [𝑆𝑖𝑡+1 = 𝑠′|𝑆𝑖𝑡 = 𝑠] Pr [𝑆𝑖𝑡 = 𝑠] = Pr [𝑆𝑖𝑡+1 = 𝑠′, 𝑆𝑖𝑡 = 𝑠].

Finally, the joint distribution of (𝑌𝑖𝑡+1, 𝑌𝑖𝑡 , 𝑌𝑖𝑡−1) satisfies

Pr [𝑌𝑖𝑡+1, 𝑌𝑖𝑡 , 𝑌𝑖𝑡−1] =
∑︁
𝑠∈S
Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡 = 𝑠] Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠] Pr [𝑌𝑖𝑡−1, 𝑆𝑖𝑡 = 𝑠] , (A3)
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because

Pr [𝑌𝑖𝑡+1, 𝑌𝑖𝑡 , 𝑌𝑖𝑡−1]

=
∑︁
𝑠′∈S

∑︁
𝑠∈S
Pr [𝑌𝑖𝑡+1, 𝑌𝑖𝑡 , 𝑌𝑖𝑡−1, 𝑆𝑖𝑡 = 𝑠′, 𝑆𝑖𝑡−1 = 𝑠]

=
∑︁
𝑠′∈S

∑︁
𝑠∈S
Pr [𝑌𝑖𝑡+1 |𝑌𝑖𝑡 , 𝑆𝑖𝑡 = 𝑠′] Pr [𝑌𝑖𝑡 , 𝑆𝑖𝑡 = 𝑠′|𝑌𝑖𝑡−1, 𝑆𝑖𝑡−1 = 𝑠] Pr [𝑌𝑖𝑡−1, 𝑆𝑖𝑡−1 = 𝑠]

=
∑︁
𝑠′∈S

∑︁
𝑠∈S
Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡 = 𝑠′] Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠′] Pr [𝑆𝑖𝑡 = 𝑠′|𝑆𝑖𝑡−1 = 𝑠] Pr [𝑌𝑖𝑡−1, 𝑆𝑖𝑡−1 = 𝑠]

=
∑︁
𝑠′∈S
Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡 = 𝑠′] Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠′]

(∑︁
𝑠∈S
Pr [𝑆𝑖𝑡 = 𝑠′|𝑆𝑖𝑡−1 = 𝑠] Pr [𝑌𝑖𝑡−1, 𝑆𝑖𝑡−1 = 𝑠]

)
=

∑︁
𝑠′∈S
Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡 = 𝑠′] Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡 = 𝑠′] Pr [𝑌𝑖𝑡−1, 𝑆𝑖𝑡 = 𝑠′] ,

where the first equality follows from the law of total probability; the second equality decomposes

the joint distribution in terms of the corresponding conditional distributions; the third equality

makes use of the HMM assumption (equation (2)); the fourth equality rearranges the terms in the

summations; and the fifth equality follows from the law of total probability.

In matrix notation, equations (A1)–(A3) are equivalent to the equations (3)–(5) presented in the

main text.

B Measurement Error under the HMM Assumptions

In this section, we investigate the measurement error in observed transition probabilities under

the HMM assumptions. While the implications of (nonclassical) measurement error in discrete

variables are well understood (see, e.g., the survey by Schennach, 2021), mismeasured transition

probabilities have been less studied in regression analyses. Here, we focus first on deriving

the relationship between (a) the observed transitions, (b) the true latent transitions, and (c) the

measurement error term, in order to shed light on the type of errors (e.g., classical vs nonclassical)

that arises as a consequence of the HMM assumptions. Then, we use this relationship to investigate

how it may affect the estimation of regression model parameters.
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We assume the researcher is interested in measuring transitions within defined regions, and has

access to a panel data with many regions 𝑚, where each region is composed of several pixels 𝑖. For

instance, she may be interested in deforestation rates or pollution trends at the municipality level.

Take a pixel 𝑖 in a region 𝑚 at time 𝑡. (For expositional ease, we omit the subscripts 𝑖 and 𝑚 below.)

The transition probability of the observed state from 𝑦 at 𝑡 to 𝑦′ at 𝑡 + 1 can be written as

Pr [𝑌𝑡+1 = 𝑦′|𝑌𝑡 = 𝑦] =
∑︁
𝑠∈S

∑︁
𝑠′∈S
Pr [𝑌𝑡+1 = 𝑦′, 𝑆𝑡+1 = 𝑠′, 𝑆𝑡 = 𝑠 |𝑌𝑡 = 𝑦]

=
∑︁
𝑠∈S

∑︁
𝑠′∈S
Pr [𝑌𝑡+1 = 𝑦′|𝑆𝑡+1 = 𝑠′, 𝑆𝑡 = 𝑠,𝑌𝑡 = 𝑦] Pr [𝑆𝑡+1 = 𝑠′, 𝑆𝑡 = 𝑠 |𝑌𝑡 = 𝑦]

=
∑︁
𝑠∈S

∑︁
𝑠′∈S
Pr [𝑌𝑡+1 = 𝑦′|𝑆𝑡+1 = 𝑠′] Pr [𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠] Pr [𝑆𝑡 = 𝑠 |𝑌𝑡 = 𝑦] ,

(B4)

where the third equality follows from the main HMM assumption – equation (2).

To simplify, suppose we have just two states. For concreteness, and following our running

example, suppose S ={𝑑, 𝑓 }, where 𝑑 = deforested and 𝑓 = forested. Here we focus on the

measurement error in the transition probability from forest to deforested (i.e., the deforestation

rate), but the reasoning applies to transitions involving any two states. Specifically, take 𝑦′ = 𝑑 and

𝑦 = 𝑓 . Then, (B4) becomes

Pr [𝑌𝑡+1 = 𝑑 |𝑌𝑡 = 𝑓 ] = Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑓 ] Pr [𝑆𝑡 = 𝑓 |𝑌𝑡 = 𝑓 ]

+Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑑] Pr [𝑆𝑡 = 𝑑 |𝑌𝑡 = 𝑓 ]

+Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ] Pr [𝑆𝑡+1 = 𝑓 |𝑆𝑡 = 𝑓 ] Pr [𝑆𝑡 = 𝑓 |𝑌𝑡 = 𝑓 ]

+Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ] Pr [𝑆𝑡+1 = 𝑓 |𝑆𝑡 = 𝑑] Pr [𝑆𝑡 = 𝑑 |𝑌𝑡 = 𝑓 ] .
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By rearranging the equation above, and noting that probabilties add up to one, we obtain

Pr [𝑌𝑡+1 = 𝑑 |𝑌𝑡 = 𝑓 ] = (Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] − Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ])

×Pr [𝑆𝑡 = 𝑓 |𝑌𝑡 = 𝑓 ] Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑓 ]

+Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ]

+ (Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] − Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ])

×Pr [𝑆𝑡 = 𝑑 |𝑌𝑡 = 𝑓 ] Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑑] . (B5)

Next, denote the observed deforestation rate in region𝑚 at 𝑡+1 by 𝐷𝑚𝑡+1 = Pr [𝑌𝑡+1 = 𝑑 |𝑌𝑡 = 𝑓 ]

(i.e., the share of forested pixels in region𝑚 at 𝑡 that become deforested at 𝑡+1) and the corresponding

true deforestation rate by 𝐷∗
𝑚𝑡+1 = Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑓 ]. (Note that we allow these rates to vary

across the regions 𝑚 and over time 𝑡.) Define also the term multiplying the true deforestation rate

in (B5):

𝛽𝑚𝑡+1 = (Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] − Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ]) × Pr [𝑆𝑡 = 𝑓 |𝑌𝑡 = 𝑓 ]

= (Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] − Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ])

×Pr [𝑌𝑡 = 𝑓 |𝑆𝑡 = 𝑓 ] Pr [𝑆𝑡 = 𝑓 ]
Pr [𝑌𝑡 = 𝑓 ] , (B6)

where the second equality holds by the Bayes rule. Note again that we re-incorporate the subscripts

𝑚 and 𝑡 +1 explicitly in the definition of 𝛽𝑚𝑡+1, as this term may vary over regions and time periods.

The terms on the right-hand side of (B6) should be understood to condition on pixels in region 𝑚.

Assuming the classifier is accurate (in the sense that correct classification is more likely than

misclassification), the first term on the right-hand side of (B6) is positive, which implies that 𝛽𝑚𝑡+1

is between zero and one. Clearly, 𝛽𝑚𝑡+1 depends on the misclassification probabilities and on the

ratio of the shares of true and observed forested areas in region 𝑚 in the previous period 𝑡. In

general, the greater the percentage of correct classifications, and the higher the share of true forested

areas relative to the share of observed forested areas, the greater the 𝛽𝑚𝑡+1.
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Next, define the term composed of those in (B5) that are not multiplying the true deforestation

rate:

𝑈𝑚𝑡+1 = Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ] + (Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] − Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ])

×Pr [𝑆𝑡 = 𝑑 |𝑌𝑡 = 𝑓 ] Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑑]

= Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ] + (Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑑] − Pr [𝑌𝑡+1 = 𝑑 |𝑆𝑡+1 = 𝑓 ])

× (1 − Pr [𝑌𝑡 = 𝑑 |𝑆𝑡 = 𝑑])
(
1 − Pr [𝑆𝑡 = 𝑓 ]
Pr [𝑌𝑡 = 𝑓 ]

)
Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑑] , (B7)

where the second equality holds by the Bayes rule. Assuming again that the classifier is accurate, we

have that 𝑈𝑚𝑡+1 is positive. Similar to 𝛽𝑚𝑡+1, 𝑈𝑚𝑡+1 depends on the misclassification probabilities

and on the shares of true and observed forested areas in the previous period, but, in contrast to

𝛽𝑚𝑡+1, it also depends on the true persistence of the deforested areas (Pr [𝑆𝑡+1 = 𝑑 |𝑆𝑡 = 𝑑]).

Substituting the definitions of 𝐷𝑚𝑡+1, 𝐷∗
𝑚𝑡+1, 𝛽𝑚𝑡+1, and 𝑈𝑚𝑡+1 into equation (B5), and taking

the lagged expression, we obtain the following (random-coefficients) model:

𝐷𝑚𝑡 = 𝛽𝑚𝑡 𝐷
∗
𝑚𝑡 +𝑈𝑚𝑡 .

Adding and subtracting the average of 𝛽𝑚𝑡 and𝑈𝑚𝑡 (over𝑚 and 𝑡), denoted by 𝛽 and 𝛼, respectively,

we get

𝐷𝑚𝑡 = 𝛼 + 𝛽 𝐷∗
𝑚𝑡 +𝑉𝑚𝑡 , (B8)

where

𝑉𝑚𝑡 = (𝛽𝑚𝑡 − 𝛽) 𝐷∗
𝑚𝑡 + (𝑈𝑚𝑡 − 𝛼) . (B9)

The slope 𝛽 of the regression equation (B8) – also known as the “factor loading” – is between

zero and one (given that 𝛽𝑚𝑡 is between zero and one for all 𝑚 and 𝑡), provided that the land

use classifier is accurate everywhere. This contrasts with standard measurement error models, in

which loadings are typically equal to one. The measurement error, 𝑉𝑚𝑡 , depends on both (a) the

interaction between 𝐷∗
𝑚𝑡 and the (mean-zero) random coefficients 𝛽𝑚𝑡 (which in turn depends on
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misclassification probabilities and on shares of true and observed forested areas), and (b) the (mean-

zero) term 𝑈𝑚𝑡 (which also depends on misclassification probabilities and on shares of true and

observed forested areas, in addition to on the true persistence of deforested areas). In the absence

of ground-truth data and of additional (identifying) assumptions, the residual 𝑉𝑚𝑡 is unobservable.

While it is non-trivial to derive the exact dependence between 𝐷∗
𝑚𝑡 and 𝑉𝑚𝑡 , given (B6)–(B9),

their correlation seems unlikely to be zero. That is because, on the one hand, transition probabilities

are between zero and one, so when 𝐷∗
𝑚𝑡 = 0, we must have 𝐷𝑚𝑡 ≥ 0, and when 𝐷∗

𝑚𝑡 = 1, we must

have 𝐷𝑚𝑡 ≤ 1, suggesting a negative correlation between 𝐷∗
𝑚𝑡 and 𝑉𝑚𝑡 . On the other hand, regions

in which deforestation is persistent (i.e., places with high levels of Pr [𝑆𝑡 = 𝑑 |𝑆𝑡−1 = 𝑑], and so with

high levels of 𝑈𝑚𝑡 , all else constant) are likely good regions for agricultural production, leading to

high deforestation rates, which in turn induces a positive correlation between 𝐷∗
𝑚𝑡 and 𝑉𝑚𝑡 . These

observations suggest that 𝐷∗
𝑚𝑡 and 𝑉𝑚𝑡 likely correlate, though the direction of the correlation is

unclear ex-ante; their probabilistic relationship may even be nonlinear. Either way, the derivation

presented here suggests the presence of nonclassical measurement error in transition rates under

the HMM assumptions.

B.1 Consequences of HMM Measurement Error for Regression Models

Next, we investigate the consequences ofmeasurement error in transition probabilities for regression

models. We focus on mismeasured dependent variables (when the researcher may be interested,

say, in the determinants of deforestation or in some causal effect of a policy intervention), but a

similar reasoning applies tomismeasured covariates (as when researchers are interested in the health

impacts of changes in pollution levels or of changes in fires incidents). We start with the standard

linear regression model, then we study the widely used logit model, and extend the investigation to

the nested logit model.
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Linear Model. Suppose we want to estimate the following simple regression model

𝐷∗
𝑚𝑡 = 𝛾0 + 𝛾1𝑋𝑚𝑡 + 𝜀𝑚𝑡 ,

where 𝑋𝑚𝑡 is a potential determinant of interest, e.g., the price of a commodity like beef or palm oil,

or a policy intervention indicator. For simplicity, we assume 𝑋𝑚𝑡 is uncorrelated with 𝜀𝑚𝑡 . Suppose

we only observe 𝐷𝑚𝑡 satisfying the HMM assumptions, and so satisfying equations (B8)–(B9).

Let the (possibly nonlinear) dependence between 𝑉𝑚𝑡 and 𝐷∗
𝑚𝑡 (defined in the previous section) be

specified as

𝑉𝑚𝑡 = ℎ
(
𝐷∗
𝑚𝑡

)
+ 𝜖𝑚𝑡 ,

for some unknown (possibly nonmonotonic) function ℎ(.). Then

𝐷𝑚𝑡 = 𝛼 + 𝛽 𝐷∗
𝑚𝑡 +𝑉𝑚𝑡

= 𝛼 + 𝛽 𝐷∗
𝑚𝑡 + ℎ

(
𝐷∗
𝑚𝑡

)
+ 𝜖𝑚𝑡

= 𝛼 + 𝛽 (𝛾0 + 𝛾1𝑋𝑚𝑡 + 𝜀𝑚𝑡) + ℎ (𝛾0 + 𝛾1𝑋𝑚𝑡 + 𝜀𝑚𝑡) + 𝜖𝑚𝑡

= 𝛿0 + 𝛿1 𝑋𝑚𝑡 + 𝜉𝑚𝑡 ,

where 𝛿0 = (𝛼 + 𝛽𝛾0), 𝛿1 = 𝛽𝛾1, and

𝜉𝑚𝑡 = ℎ (𝛾0 + 𝛾1𝑋𝑚𝑡 + 𝜀𝑚𝑡) + 𝜖𝑚𝑡 + 𝛽𝜀𝑚𝑡 .

If we regress the mismeasured 𝐷𝑚𝑡 on 𝑋𝑚𝑡 using OLS to estimate 𝛾1, we obtain biased results

for two reasons. First, if 𝑋𝑚𝑡 and 𝜉𝑚𝑡 were uncorrelated, OLS would be unbiased for 𝛿1 = 𝛽𝛾1 ≠ 𝛾1,

and so it would be biased for 𝛾1 given that 𝛽 is between zero and one when the land use classifier

is accurate. That leads to an attenuation bias. (When the land use classifier is not accurate, 𝛽

could be negative, reversing the sign of the estimates.) Second, because 𝑋𝑚𝑡 may correlate with

the unobservable 𝜉𝑚𝑡 , through the term ℎ(.). As discussed previously, ℎ(.) reflects the nonclassical
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nature of the measurement error in transition probabilities (i.e., it reflects the fact that 𝐷∗
𝑚𝑡 and 𝑉𝑚𝑡

likely correlate). This correlation can be positive or negative; when the correlation is positive and

sufficiently large, it can bias OLS upward. In sum, when transition probability is the dependent

variable of interest in a linear regression model, its measurement error most likely biases (without

necessarily attenuating) the OLS estimator.

Logit Model. Consider the following logit model of deforestation rates:

ln
(
𝐷∗
𝑚𝑡

1 − 𝐷∗
𝑚𝑡

)
= 𝛾0 + 𝛾1 𝑋𝑚𝑡 + 𝜀𝑚𝑡 ,

where 𝑋𝑚𝑡 is independent of 𝜀𝑚𝑡 . The right-hand side of this regression equation corresponds to

a mean value of a latent variable, and can be interpreted as the mean utility received by agents in

region 𝑚 at 𝑡 from deforestation. Given that we observe 𝐷𝑚𝑡 instead of 𝐷∗
𝑚𝑡 , we have

ln
(
𝐷𝑚𝑡

1 − 𝐷𝑚𝑡

)
= 𝛾0 + 𝛾1 𝑋𝑚𝑡 + 𝜀𝑚𝑡 +

[
ln

(
𝐷𝑚𝑡

1 − 𝐷𝑚𝑡

)
− ln

(
𝐷∗
𝑚𝑡

1 − 𝐷∗
𝑚𝑡

)]
. (B10)

To have a sense of the effect that the last term on the right-hand-side of (B10) can have on

estimation, apply a second-order Taylor approximation to ln
(
𝐷𝑚𝑡

1−𝐷𝑚𝑡

)
about ln

(
𝐷∗

𝑚𝑡

1−𝐷∗
𝑚𝑡

)
to obtain an

approximation to equation (B10):

ln
(
𝐷𝑚𝑡

1−𝐷𝑚𝑡

)
≈ 𝛾0 + 𝛾1 𝑋𝑚𝑡 + 𝜀𝑚𝑡 −

(
1

𝐷∗
𝑚𝑡 (1−𝐷∗

𝑚𝑡)
) (
𝐷∗
𝑚𝑡 − 𝐷𝑚𝑡

)
− 1−2𝐷∗

𝑚𝑡

(𝐷∗
𝑚𝑡 (1−𝐷∗

𝑚𝑡))2
(
𝐷∗
𝑚𝑡 − 𝐷𝑚𝑡

)2
.

If the measurement error in deforestation rate were classic, the expectation of the first-order

term above would be zero, i.e.,

𝐸

[(
1

𝐷∗
𝑚𝑡

(
1 − 𝐷∗

𝑚𝑡

) ) (
𝐷∗
𝑚𝑡 − 𝐷𝑚𝑡

)
|𝑋𝑚𝑡

]
= 0.

However, given that 𝐷∗
𝑚𝑡 − 𝐷𝑚𝑡 = −𝛼 + (1 − 𝛽)𝐷∗

𝑚𝑡 −𝑉𝑚𝑡 , where (1 − 𝛽) > 0, and that 𝐷∗
𝑚𝑡 likely
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correlates with 𝑉𝑚𝑡 (see equation (B8)), the expectation of the first-order term may be different

from zero.

Similarly, the second-order term is not mean-zero either. This is easier to see if themeasurement

error were classic, with𝑉𝑎𝑟 (𝐷∗
𝑚𝑡−𝐷𝑚𝑡 |𝑋𝑚𝑡) = 𝜎2. In this case, the expectation of the second-order

term above would be

𝐸

[
1 − 2𝐷∗

𝑚𝑡(
𝐷∗
𝑚𝑡

(
1 − 𝐷∗

𝑚𝑡

) )2 (
𝐷∗
𝑚𝑡 − 𝐷𝑚𝑡

)2 |𝑋𝑚𝑡] = 𝜎2𝐸

[ (
1 − 2𝐷∗

𝑚𝑡

)(
𝐷∗
𝑚𝑡

(
1 − 𝐷∗

𝑚𝑡

) )2 |𝑋𝑚𝑡] , (B11)

which is not zero. More importantly, not only are the expectations of the first- and second-order

terms of the approximation not zero, they also vary with 𝑋𝑚𝑡 , since 𝐷∗
𝑚𝑡 depends directly on 𝑋𝑚𝑡 .

This means that these terms can create bias in both the estimates of 𝛾0 and 𝛾1.

Nested Logit Model. Consider a nested logit model with three elements in the choice set: crops,

pasture, and forest. Furthermore, assume that crops and pasture are in the same nest, and forest is

in a separate nest. A regression equation for such a model has the following form:

ln
(

𝐷𝐶𝑚𝑡

1 − 𝐷𝑃𝑚𝑡 − 𝐷𝐶𝑚𝑡

)
= 𝛾0 + 𝛾1𝑋𝑚𝑡 + 𝜆 ln

(
𝐷𝐶𝑚𝑡

𝐷𝐶𝑚𝑡 + 𝐷𝑃𝑚𝑡

)
+ 𝜀𝑚𝑡 ,

where 𝐷𝐶𝑚𝑡 is the observed rate at which forest is converted to cropland and 𝐷𝑃𝑚𝑡 is the observed

rate at which forest is converted to pasture. The new parameter not appearing in the basic logit

model above is 𝜆, which controls the degree to which the shocks to latent variables are correlated

within the nest. If 𝜆 = 0, we just have a multinomial logit model with no correlation in shocks. As

𝜆 → 1, the shocks within the nest become highly correlated.

In this nested logit regression equation, measurement error in the transition rates implies both

a left-hand-side and a right-hand-side measurement error problems. The first case was discussed

previously, in the context of a binary logit model; the second case may induce an attenuation bias

in the estimate of 𝜆.
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C The EM and the Viterbi Algorithms

We now briefly explain the EM and the Viterbi algorithms.

C.1 The EM Algorithm

To simplify notation, let 𝜃 represent the collection of HMM parameters, i.e. 𝜃 is a list containing

Pr [𝑆𝑖1], Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡] for 𝑡 = 1, ..., 𝑇 − 1, and Pr [𝑌𝑖𝑡 |𝑆𝑖𝑡], for all 𝑡 = 1, ..., 𝑇 . Let 𝑦 denote the entire

panel of observations {𝑦𝑖𝑡}; similarly, let 𝑠 denote values of the hidden state for the entire panel.

Define the log likelihood

𝑙 (𝜃) ≡ ln Pr [𝑌 = 𝑦; 𝜃] (C12)

and let

𝐽 (𝜃, 𝜃′) ≡
∑︁
𝑠

Pr [𝑆 = 𝑠 |𝑌 = 𝑦; 𝜃′ ] ln
{
Pr [𝑌 = 𝑦, 𝑆 = 𝑠; 𝜃 ]
Pr [𝑌 = 𝑦, 𝑆 = 𝑠; 𝜃′ ]

}
. (C13)

The EM algorithm begins with an initial guess 𝜃 (1) then alternates between steps 1 and 2 below

for iterations 𝑗 = 1, 2, . . . until convergence:

1. The expectation (E) step: compute the posteriors Pr
[
𝑆 |𝑌 = 𝑦; 𝜃 ( 𝑗)

]
2. The maximization (M) step: set 𝜃 ( 𝑗+1) to argmax𝜃 𝐽

(
𝜃, 𝜃 ( 𝑗)

)
The EM algorithm produces a sequence of parameter estimates for which the log likelihood

𝑙

(
𝜃 ( 𝑗)

)
is monotonically increasing. In problems where the likelihood function is non-concave,

this means the algorithm could converge to a local maximum.

A key aspect of the E-step of the EM algorithm is the Baum-Welch algorithm. It efficiently

calculates probabilities of the form

Pr [𝑆𝑖𝑡 |𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝑇 ] ,

where 𝑡 ≤ 𝑇 . In words, the model allows us to condition on a long sequence of noisy land use

classifications at a given spatial point, and make probabilistic statements about the point’s true land
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use at any period in that history. This is valuable if we are interested in land cover at a specific

point: the fact that we condition on the entire sequence 𝑌𝑖1, 𝑌𝑖2, . . . 𝑌𝑖𝑇 can potentially improve

predictions when compared to classifiers that use only contemporaneous data to predict land use.

For instance, suppose we have 15 years of data at a particular spatial point, and that the land use

set is S = {forest, deforested}. Imagine that our land use prediction model outputs 𝑌𝑖𝑡 = forest for

the first 10 years, followed by deforestation for a single year, followed by four years of forest.

Intuitively, if our classifier is reasonably accurate but imperfect, we would guess that the isolated

deforestation prediction is erroneous and that the true land use was forest for the entire 15 years.

This is conceivable given that it takes far longer than a year to regrow forest on newly deforested

land, and given the implausibility of all the classifications other than the eleventh being wrong (or at

least several of them). Thus, we might in principle simply relabel the eleventh year as “forest”. By

implementing such ad-hoc reclassifications, one can effectively smooth out implausible transitions

in the data. However, while heuristic-based adjustments such as this simple solution improve

estimations of transition rates by making use of time-series information, rather than just cross-

sectional information (as typically done in annual land cover classifications), such adjustments are

at the whim of the researcher and so may be highly arbitrary. Further, they can be incomplete

as there may be cases requiring corrections that are not considered by the researcher. Indeed,

typical heuristic adjustments do not eliminate excessive transitions in land use applications, as

documented by Friedl et al. (2010). In contrast, the HMM approach naturally accomplishes this

sort of smoothing by explicitly modeling the probability of errors in predicted land use, along

with the transition probabilities in the true underlying state – and with no heuristics nor ad hoc

adjustments involved. The amount of smoothing depends on the estimated parameters – in the

edge cases where the off-diagonals of 𝚼 are zero, for example, we do not need any smoothing.

Identifying the parameters from observed data is therefore crucial in applications, and the Baum-

Welch algorithm allows us to smooth out implausible transitions efficiently.

In our application, the M step of the EM algorithm has a closed-form solution. Denote the

posterior probabilities by 𝜋𝑖𝑡 [𝑘] ≡ Pr[𝑆𝑖𝑡 = 𝑘 |𝑌 = 𝑦; 𝜃 ( 𝑗)] and 𝜋𝑖𝑡 [𝑘, 𝑙] ≡ Pr[𝑆𝑖𝑡 = 𝑘, 𝑆𝑖𝑡+1 =
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𝑙 |𝑌 = 𝑦; 𝜃 ( 𝑗)]; these can be computed in an efficient forward-backward pass over time using the

Baum-Welch algorithm (i.e., the E step), and the calculations can be done in parallel across spatial

points given that we are not modeling spatial dependence (i.e., not conditioning on other pixels’

land uses). The updated values of 𝜃 are

Pr [𝑆𝑖1 = 𝑘] ( 𝑗+1) =
∑
𝑖 𝜋𝑖1 [𝑘]∑
𝑖,𝑠 𝜋𝑖1 [𝑠]

,

Pr [𝑆𝑖𝑡+1 = 𝑙 |𝑆𝑖𝑡 = 𝑘] ( 𝑗+1) =
∑
𝑖 𝜋𝑖𝑡 [𝑘, 𝑙]∑
𝑖 𝜋𝑖𝑡 [𝑘]

,

Pr [𝑌𝑖𝑡 = 𝑦 |𝑆𝑖𝑡 = 𝑘] ( 𝑗+1) =
∑
𝑖,𝑡:𝑌𝑖𝑡=𝑦 𝜋𝑖𝑡 [𝑘]∑

𝑖,𝑡 𝜋𝑖𝑡 [𝑘]
.

(C14)

See van Handel (2008) for a reference on the EM algorithm applied to discrete HMMs. Extend-

ing the EM algorithm to deal with cases where 𝑌𝑖𝑡 is missing at random (e.g. due to cloud cover)

is straightforward: in the M step update to 𝚼, the sums in both the numerator and denominator

are restricted to cases where 𝑌𝑖𝑡 is non-missing. Modifying the Baum-Welch algorithm (i.e. the

E step) to deal with missingness-at-random in 𝑌𝑖𝑡 is equally simple, as we only need to compute

Pr [𝑆𝑖𝑡 |𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝑇 ] conditioned on the available information for each pixel 𝑖. (For instance, if

𝑌𝑖2 is missing, we compute Pr [𝑆𝑖𝑡 |𝑌𝑖1, 𝑌𝑖3, . . . , 𝑌𝑖𝑇 ] for all 𝑡 ≤ 𝑇 .)

C.2 The Viterbi Algorithm

The HMM correction is not a classifier per se, but it can be used to generate the most likely

trajectory of the states for each pixel in the data using the Viterbi algorithm (van Handel, 2008,

Chapter 3). The Viterbi algorithm is a dynamic programming algorithm that generates these

predictions given the estimated HMM parameters and the history of observations {𝑌1, 𝑌2, . . . , 𝑌𝑇 }.

Formally, it chooses the sequence {𝑠1, 𝑠2, . . . , 𝑠𝑇 } that maximizes the conditional probability path

estimate Pr [𝑆1, 𝑆2, . . . , 𝑆𝑇 |𝑌1, 𝑌2, . . . , 𝑌𝑇 ] for any given pixel.

Briefly, the probability path estimatePr [𝑆1, 𝑆2, . . . , 𝑆𝑇 |𝑌1, 𝑌2, . . . , 𝑌𝑇 ] can be expressed in terms

of initial, transition and misclassification distributions by exploiting the HMM structure and the

Bayes formula. Based on such expression, the maximization problem can be solved recursively, as
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the Bellman equation in dynamic optimization problems, solving for one variable only in each step

(see Section 3.3 in van Handel, 2008). Notice that finding the most likely path is different from the

problem of finding the most likely state in a given period Pr [𝑆𝑡 |𝑌1, 𝑌2, . . . , 𝑌𝑇 ], which is calculated

efficiently by the Baum-Welch algorithm, as noted previously.

As a word of caution, while the Viterbi algorithm computes the classification for a given point,

it may not yield unbiased estimates of land use shares or transition rates for an area (but these can

be recovered directly from the HMM, so the Viterbi should not be needed in this circumstance).

That is not surprising given that there is an information loss when we go from the knowledge of the

full probability distribution to knowing just the most likely outcome. It is worth noting too that the

Viterbi algorithm is more likely to be useful in longer time series, when there is more information

from the HMM parameters on the likelihood of different paths.

D Monte Carlo Studies

In this section, we present several Monte Carlo experiments to investigate the finite-sample per-

formance of the MD and ML estimators. First, we fix the parameters of the model (the initial

distribution, the transition probabilities, and the misclassification probabilities) and vary the sam-

ple size (i.e., the number of grid points). Second, we fix the number of grid points and evaluate how

the estimators perform at different true transition probabilities, misclassification probabilities, and

with different numbers of time periods. Third, we incorporate spatial dependence in our design.

Fourth, we investigate the performance of our correction when the HMM model is misspecified;

specifically, we allow for serial correlation in misclassification probabilities, violating therefore

equation (2) in the main text. Finally, we analyze a simple treatment effects regression where

transition rates are the dependent variable and test whether HMM estimates can yield unbiased

estimates.
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D.1 Basic Setup

We consider two land uses, S = {1, 2}, observed in 𝑇 = 4 time periods. The initial distribution

over hidden states is

P𝑆1 = (0.9, 0.1)ᵀ ,

where the initial share of land cover 𝑠 = 1 is 0.9. The transition matrices are

P1 ≡ P𝑆2 |𝑆1 =
©«
0.96 0.04

0.02 0.98

ª®®¬ , P2 ≡ P𝑆3 |𝑆2 =
©«
0.9 0.1

0.02 0.98

ª®®¬ , P3 ≡ P𝑆4 |𝑆3 =
©«
0.8 0.2

0.02 0.98

ª®®¬ .
So the probability that a pixel 𝑖 with land cover 𝑠 = 1 in period 𝑡 = 1 stays with the same land cover

in the next time period, 𝑡 = 2, is Pr[𝑆𝑖2 = 1|𝑆𝑖1 = 1] = 0.96. The transition probability decreases to

Pr[𝑆𝑖3 = 1|𝑆𝑖2 = 1] = 0.9 in the next period 𝑡 = 3, and decreases further to Pr[𝑆𝑖4 = 1|𝑆𝑖3 = 1] = 0.8

in the last period 𝑡 = 4. To simplify, we keep the transitions conditioned on state 𝑠 = 2 the same

over time: Pr[𝑆𝑖𝑡+1 = 2|𝑆𝑖𝑡 = 2] = .98 for all 𝑡.

The misclassification probabilities are time-invariant and given by

𝚼 =
©«
0.9 0.2

0.1 0.8

ª®®¬ .
Recall that the elements of 𝚼 are Pr [𝑌𝑖𝑡 = 𝑦 |𝑆𝑖𝑡 = 𝑠] (with 𝑌𝑖𝑡 along the rows and 𝑆𝑖𝑡 along the

columns). This means that the probability of classifying land use 𝑦 = 1 when the true land cover

is actually 𝑠 = 2 is just Pr [𝑌𝑖𝑡 = 1|𝑆𝑖𝑡 = 2] = 0.2. Correct classification probabilities are 0.9 (for

𝑠 = 1) and 0.8 (for 𝑠 = 2), which are within the range of accuracies observed in practice in typical

land cover classifications.

The HMM generates the observed transitions for 𝑌𝑖𝑡 :

P𝑌2 |𝑌1 =
©«
0.815 0.185

0.363 0.637

ª®®¬ , P𝑌3 |𝑌2 =
©«
0.775 0.225

0.37 0.63

ª®®¬ , P𝑌4 |𝑌3 =
©«
0.72 0.28

0.472 0.528

ª®®¬ .
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These transitions put much greater probabilities on the off-diagonals than the true transitions. (E.g.,

Pr [𝑌𝑖2 = 2|𝑌𝑖1 = 1] = 0.185 while Pr [𝑆𝑖2 = 2|𝑆𝑖1 = 1] = 0.04.) This implies excessive land cover

switching. Frequency estimators of the transition probabilities for 𝑌𝑖𝑡 are consistent for P𝑌𝑡+1 |𝑌𝑡 , and

are therefore inconsistent for the true transitions P𝑆𝑡+1 |𝑆𝑡 .

To evaluate the performance of the proposed HMM corrections, based on the MD and ML

estimators, we generated samples with 𝑁 = 100, 𝑁 = 500, 𝑁 = 1, 000, 𝑁 = 10, 000 spatial grid

points, observed for 𝑇 = 4 time periods. For each sample size, we generate 100 Monte Carlo

replications. In each replication, we estimate the observed transitions for 𝑌𝑖𝑡 using frequency

estimators, and run both MD and ML estimator starting from six randomly chosen initial values.

The initial values for the diagonals of the true P𝑆𝑡+1 |𝑆𝑡 and 𝚼 matrices are i.i.d. uniform on

[0.6, 0.98]. The initial values for the first element of the initial distribution 𝑃𝑆1 are drawn i.i.d.

uniform on [.85, .95]. For the MD estimator, we take the identity matrix as the weighting matrix,

W = I, and we use both classifications, 𝑦𝑡+1 = 1 and 𝑦𝑡+1 = 2, as they both satisfy Condition 4.

D.2 Baseline Results

Table E1 presents the average bias, the standard deviation, and the mean-squared error across the

Monte Carlo replications (on the rows). For each parameter, we show results for the frequency

estimator, the MD, and the ML estimators (on the columns).

As expected, the performances of the MD and ML estimators in terms of the average bias and

mean-square errors are substantially better than the performance of the frequency estimator for both

the initial distribution of land cover and the transition rates. Naturally, both corrections improve

with the sample size, while the frequency estimator does not. The HMM corrections also estimate

the misclassification probabilities accurately.

As the table shows, the ML often dominates the MD estimator by having smaller biases.

Also, especially for smaller sample sizes, the ML has much smaller standard deviations than the

MD estimator. This is not surprising given that the maximum likelihood estimator is efficient.

This can be seen graphically in Figure E3, where we show the distribution across replications
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of the estimated transition probabilities Pr [𝑆𝑖𝑡+1 = 2|𝑆𝑖𝑡 = 1], and misclassification probabilities

Pr [𝑌𝑖𝑡 = 2|𝑆𝑖𝑡 = 1], using box and whisker plots. The true parameter values are marked by dotted

lines. The variability of the MD estimator suggests some caution when using it in small samples.

(These graphs slightly understate the observed variability of the MD estimator, since the graph is

truncated at .5 and some estimated values go above that.) Indeed, in our experience, the greater

standard deviation of the MD estimator (compared to the ML) implies a higher frequency of

estimated transition probabilities that are too close to, or exactly at, the boundary of the parameter

space. That happens more frequently when true transition probabilities are near zero or one.

While not shown in the table, the ML takes longer to converge than the MD estimator. That

is because the EM algorithm loops over the entire panel in its E and M steps; by contrast, the

minimum distance estimator loops over the entire panel only once to compute frequency estimators

of the joint distribution of 𝑌𝑖𝑡 , and can then evaluate its objective function quickly by looping only

over time, as opposed to the entire panel. These considerations suggest combining the MD and

ML in practice, whenever possible, taking into account their strengths. Indeed, when using the

(fast) MD estimator as the initial value for the (asymptotically more efficient) ML estimator in the

simulations, we find that the “MD followed by ML” approach takes longer to converge than the MD

alone, but it is substantially faster than the ML alone (as expected). Specifically, in our baseline

setting, MD takes around 0.5 second on average to converge; the ML using MD as initial values

takes about 19.5 seconds on average (and runs for 3 iterations); and the ML alone with random

initialization takes around 188 seconds on average (and runs for 30 iterations). So, MD followed

by ML is about 10 times faster than ML alone. And their performances are similar in terms of bias,

variance, and mean-square error, as might be expected.

We also verify the performance of the estimator with 𝑇 = 5 and 𝑇 = 6. Relative to our

𝑇 = 4 period baseline, we fix the transition probabilities for the first and last period and set the

transitions for the middle periods equal to each other.40 While the additional time periods require

40Specifically, we set

P𝑆2 |𝑆1 =

(
0.96 0.04
0.02 0.98

)
, P𝑆𝑡 |𝑆𝑡−1 =

(
0.9 0.1
0.02 0.98

)
,∀1 < 𝑡 < 𝑇, and P𝑆𝑇 |𝑆𝑇−1 =

(
0.8 0.2
0.2 0.98

)
.
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the estimation of additional parameters, the larger number of time periods could help improve the

precision of the misclassification probability estimates. In Figure E4, we replicate the results from

Figure E3 with 𝑁 = 1, 000 observations and 𝑇 = 4, 5, and 6 time periods. As these graphs show,

the results are similar across the different number of time periods.

D.3 Varying Parameter Configurations

We now fix the sample size at 𝑁 = 1, 000 and 𝑇 = 4, and investigate the performance of the HMM

corrections for several different parameter configurations. In particular, we hold fixed the transition

probabilities of land use at the levels described before and vary the misclassification probabilities

for the hidden state 𝑠 = 1. Then we hold fixed the misclassification probabilities and vary the

transition probability for state 𝑠 = 1 in the last period.

Figure E5 presents the results for when we vary the misclassification probability for state 1,

Pr[𝑌𝑖𝑡 = 2|𝑆𝑖𝑡 = 1] (i.e., Υ(2, 1)), between 5 and 25 percent, while holding other parameters fixed.

The top panel shows the behavior of the estimates of the transition probabilitiesPr[𝑆𝑖𝑡+1 = 2|𝑆𝑖𝑡 = 1],

for 𝑡 = 1, 2, 3, and the bottom panel shows the behavior of the estimates of the misclassification

probability Pr[𝑌𝑖𝑡 = 2|𝑆𝑖𝑡 = 1]. The lines are non-parametric loess regression lines with a shaded

95% confidence interval, where the data is fit from the different Monte Carlo simulations.

Intuitively, as the true misclassification probability increases, the frequency estimates of the

transitions increase for every period, even though the actual transition rate is constant. In other

words, the frequency estimator predicts many more transitions than actually occur. In contrast, the

MD and the ML estimators predict a flatter transition rate. Also, the MD performance degrades

for the transition probabilities as the misclassification rate increases. While it is unclear why that

happens, these results suggest that the ML estimator might be preferred in practice when the main

object of interest is the transition probability, Pr[𝑆𝑖𝑡+1 |𝑆𝑖𝑡]. In constrast, when we look at the

estimates of the misclassification rate, Pr[𝑌𝑖𝑡 |𝑆𝑖𝑡], the estimates are more similar for the MD and

ML approaches, but the ML is more biased as the true misclassification rate increases.
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Figure E6 presents the results for when we vary the transition probability for hidden state

𝑠 = 1 in the last period, Pr[𝑆𝑖4 = 2|𝑆𝑖3 = 1] (i.e., P3(1, 2)), between 5 and 40 percent. The

format of these graphs is similar to those in Figure E5. These graphs show that both MD and ML

estimators continue to perform well at estimating transitions and misclassification rates with no

notable differences between them (aside from those discussed above).

D.4 Spatial Dependence and Serial Correlation

We now incorporate spatial dependence and serial correlation in our Monte Carlo exercises. For

each specification, we run 100 simulations.41

Set up. To allow for spatial correlation in the true transition process, Pr[𝑆𝑖𝑡+1 |𝑆𝑖𝑡],we first arrange

all pixels in a two dimensional square lattice of dimension 100-by-100 – i.e. we observe 10,000

pixels per time period. The lattice is partitioned into 100 square “fields” of 100 pixels each (so

that each field is composed of 10-by-10 pixels). We assume the true land use follows a first-order

Markov process at the field level, meaning that we always have 𝑆𝑖𝑡 = 𝑆 𝑗 𝑡 when pixels 𝑖 and 𝑗

belong to the same field, and that 𝑆𝑖𝑡 and 𝑆 𝑗 𝑡 are fully independent otherwise. Intuitively, one can

think of the fields as being parcels of land managed by the same person, and that different fields

are managed by different (independent) farmers. This is plausible in empirical applications and it

satisfies the spatial weak dependence assumption (Conley, 1999). (Note that when fields contain

just one pixel, there is no spatial dependence in 𝑆𝑖𝑡 , and the model presented here coincides with

the one covered in our previous Monte Carlo exercises.) The initial distribution over the hidden

41We have also incorporated missing data that are missing at random, reflecting the common practical issue of
(random) clouds preventing full land use classifications. Specifically, we randomly select 10% of the pixels in every
period to be unobserved (i.e., not classified as either 𝑠 = 1 nor 𝑠 = 2), and ran the same set of specifications described
below. As expected, observations that are missing-at-random do not bias our estimators, but increase their variances.
In the interests of space, we do not present these simulated results here.
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states is P𝑆1 = (0.7, 0.3)ᵀ, and the transition matrices are

P1 ≡ P𝑆2 |𝑆1 =
©«
0.96 0.04

0.02 0.98

ª®®¬ , P2 ≡ P𝑆3 |𝑆2 =
©«
0.9 0.1

0.07 0.93

ª®®¬ , P3 ≡ P𝑆4 |𝑆3 =
©«
0.8 0.2

0.3 0.7

ª®®¬ .
We also allow for spatial dependence (and serial correlation) in the misclassification proba-

bilities, Pr[𝑌𝑖𝑡 |𝑆𝑖𝑡], in a parsimonious way. To that end, we introduce the variable 𝑍𝑖𝑡 ∈ {−1, 1},

which captures the difficulty is classifying the land cover correctly: when 𝑍𝑖𝑡 = 1, the proba-

bility that the machine learning classifier makes a mistake is higher than when 𝑍𝑖𝑡 = −1. We

then adjust equation (2) by conditioning it on 𝑍𝑖𝑡 , so that Pr[𝑌𝑖𝑡+1, 𝑆𝑖𝑡+1 | {𝑌𝑖𝑡−ℎ, 𝑆𝑖𝑡−ℎ}ℎ≥0 , 𝑍𝑖𝑡+1] =

Pr [𝑌𝑖𝑡+1 |𝑆𝑖𝑡+1, 𝑍𝑖𝑡+1] × Pr [𝑆𝑖𝑡+1 |𝑆𝑖𝑡]. Abusing notation slightly, we set the misclassification proba-

bilities to be:

Pr [𝑌𝑖𝑡 | 𝑆𝑖𝑡 , 𝑍𝑖𝑡 = −1] =

0.99 0.01

0.01 0.99

 , and
Pr [𝑌𝑖𝑡 | 𝑆𝑖𝑡 , 𝑍𝑖𝑡 = 1] =


0.81 0.19

0.39 0.61

 .
In our simulations, half of the pixels are difficult to classify (i.e. Pr[𝑍𝑖𝑡 = −1] = Pr[𝑍𝑖𝑡 = 1] = 1/2),

implying an overall misclassification probabilities of

Υ = 0.5 · Pr [𝑌𝑖𝑡 | 𝑆𝑖𝑡 , 𝑍𝑖𝑡 = 1] + 0.5 · Pr [𝑌𝑖𝑡 | 𝑆𝑖𝑡 , 𝑍𝑖𝑡 = −1] =

0.9 0.1

0.2 0.8

 , (D15)

which equals the misclassification probabilities in the basic setup, presented in Section D.1.

We do not include 𝑍𝑖𝑡 in the data set, so when we estimate the model, we do not condition on

𝑍𝑖𝑡 . In this way, any spatial dependence and serial correlation in 𝑍𝑖𝑡 will be translated into spatial

and serial correlation in misclassification. Note that both MD and ML estimators will estimate the

(unconditional) Υ given by (D15). (Note also that had we conditioned on 𝑍𝑖𝑡 when estimating the

parameters, we would return to the standard HMM model presented in the main text – but now we
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would be able to estimate the (conditional on 𝑍) misclassification probabilities separately.)

We model spatial dependence in 𝑍𝑖𝑡 in the following way. First, we assume 𝑍𝑖𝑡 is generated

according to the Ising model, which specifies a join distribution of binary random variables over

the lattice in a given time period 𝑡 (see, e.g., Hastie et al., 2015, Chapter 9).42 The degree of spatial

correlation is controlled by the Ising “temperature” parameter, denoted here by 𝛽. When 𝛽 = 0,

there is no spatial correlation; when 𝛽 > 0 there is positive spatial correlation, and the higher the

value that 𝛽 takes, the stronger the spatial correlation. Misclassifications are spatially (but not

temporally) correlated when 𝛽 > 0 and 𝑍𝑖𝑡 is i.i.d. over time. In our simulations, we set either

𝛽 = 0 or 𝛽 = 2. (The qualitative results are similar when we consider other values for 𝛽.)

To incorporate serial correlation in misclassifications, we allow 𝑍𝑖𝑡 to correlate over time;

to simplify, we assume perfect correlation (i.e., 𝑍𝑖𝑡 is time-invariant). In this way, we force

misclassification probabilities to depend on past values of (𝑌𝑖𝑡 , 𝑆𝑖𝑡).43 Importantly, when that

happens, themainHMMassumption – equation (2) – is violated and our correction is not guaranteed

to work.

Results. We start discussing the results for when there is spatial correlation in the true transition

process, Pr[𝑆𝑖𝑡+1 |𝑆𝑖𝑡], but no spatial, nor serial correlation in misclassification. Figure E7 presents

an example of the initial distribution, and the evolution of both the true and the observed land uses

in the lattice, in panels (a) and (b), respectively. It is clear from the figure that the pixels’ outcomes

are spatially correlated, and that misclassifications have no spatial nor temporal dependence (given

that the same probability distribution Pr[𝑌𝑖𝑡 |𝑆𝑖𝑡] holds everywhere and in all time periods).

42Specifically, take the vector 𝑍 = (𝑍1, . . . , 𝑍𝑁 ), with 𝑍𝑖 ∈ {−1, 1} for all pixels 𝑖. (We omit the time subscript
to simplify.) The Ising model sets the joint probability distribution for 𝑍 to be Pr[𝑍 = 𝑧] =

exp{𝐻 (𝑧) }
𝐴

, where
𝐻 (𝑧) = ℎ∑

𝑖 𝑧𝑖+𝛽
∑

𝑖, 𝑗 𝑧𝑖𝑧 𝑗 , which is called theHamiltonian function; and 𝐴 =
∑

𝑧 exp𝐻 (𝑧), which is the normalization
constant. The parameter ℎ indicates whether 𝑍𝑖 = 1 is more likely (when ℎ > 0) or whether 𝑍𝑖 = −1 is more likely
(when ℎ < 0); we set ℎ = 0 in our simulations to retain symmetry. The temperature parameter is 𝛽, indicating positive
correlation across pixels in the lattice (when 𝛽 > 0), or negative correlation (when 𝛽 < 0), or no correlation (when
𝛽 = 0).

43That is because 𝑍𝑖𝑡 is not part of the data set, as mentioned previously: had we conditioned on 𝑍𝑖𝑡 , the serial
correlation in misclassification would disappear. This is similar to a linear panel data model with fixed effects. To see
the connection, suppose we have 𝑌𝑖𝑡 = 𝑍𝑖 + 𝜀𝑖𝑡 , where 𝑍𝑖 is a fixed effect and 𝜀𝑖𝑡 is i.i.d. shocks. Then, conditional on
𝑍𝑖 , there is no serial correlation in 𝑌𝑖𝑡 ; but there exists serial correlation in 𝑌𝑖𝑡 when we do not condition on 𝑍𝑖 (since
𝑌𝑖𝑡 = 𝑌𝑖𝑡−1 + 𝜀𝑖𝑡 − 𝜀𝑖𝑡−1).
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Figure E8 presents the estimated results across the simulations. As expected, both MD and

ML estimators are unbiased for both the transition and misclassification probabilities, given that

the HMM is correctly specified at the pixel level, while the frequency estimator is severely biased.

In addition, since neither the MD nor the ML estimators make use of all the possible information

available (namely, the pixels’ spatial correlation), their variances are larger here when compared to

the i.i.d. case presented in Section D.2.

Next, we add spatial dependence in misclassification (but still no serial correlation). As

mentioned previously, we incorporate the variable 𝑍𝑖𝑡 in the data generating process (but not in the

data), assuming it is i.i.d. over time and fixing the “temperature” parameter to be 𝛽 = 2. Figure E9

presents an example of the evolution of the true land uses (in panel (a)), the distribution of 𝑍𝑖𝑡 (in

panel (b)), and the evolution of the observed land uses (in panel (c)). The evolution of true land

use is similar to the previous example; the distribution of 𝑍𝑖𝑡 is highly correlated in the lattice as

well, leading to spatially correlated classification errors in any given time period, as can be seen by

contrasting the panels (a) and (c) of the figure.

Figure E10 presents the estimated results for this scenario. As before, both MD and ML

estimators are unbiased. But now they have even higher variances as neither spatial correlation

in land uses nor in misclassification are incorporated explicitly in the estimation strategy. The

frequency estimator continues to be highly biased for transitions.

In the next simulations, we drop the spatial correlation in 𝑍𝑖𝑡 and make this variable constant

over time. This translates into misclassifications that are serially (but not spatially) correlated.

Importantly, this renders the HMMmodel misspecified. Figure E11 shows the evolution of the true

land uses (in panel (a)), the distribution of 𝑍𝑖𝑡 (in panel (b)), and the evolution of the observed land

uses (in panel (c)) for one simulated example. We observe the same patterns as in the previous

case with two differences: there is no spatial correlation in classification errors, but the errors

tend to persist over time. In terms of the estimated results, presented in Figure E12, the MD and

ML estimators are now biased for transitions (though not substantially) and for misclassification

probabilities (particularly so for Pr[𝑌𝑖𝑡 = 2|𝑆𝑖𝑡 = 2]). Yet, the frequency estimator is significantly
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more biased than the HMM corrections.

Finally, we incorporate spatially dependent and time-invariant 𝑍𝑖𝑡 , imposing therefore both

spatially and serially correlated misclassifications. Figure E13 shows one simulated example, and

Figure E14 presents the estimated results. As expected, theMD andML estimators are biased, given

that the HMMmodel is misspecified, but not substantially so for the transition probabilities (though

it is more biased for the misclassification probabilities). Once again, the frequency estimator shows

significant biases for the estimated transition process.

D.5 Regression Analysis

We extend our baseline Monte Carlo simulations to illustrate an application of the HMM in a

regression context. We simulate a policy that reduces the deforestation rate in the regions where it

is implemented and compare the HMM and raw data approaches to estimating the treatment effect.

For this application, we use the baseline HMM from Section D.1 with two land uses observed

in four periods and the transition and misclassification matrices as described above. We assume

that this model describes land use transitions in 100 regions and that within each region we observe

1000 pixels. The only change from the baseline set up is that in the transition from 𝑇 = 3 to 𝑇 = 4

the probability of transitioning from state 1 to state 2 is 0.1 instead of 0.2 in 20 of the regions

(the “treated” regions). For concreteness, we consider transition rates from state 1 to state 2 as the

“deforestation rate.”

The researcher is interested in estimating the difference in this transition probability between

the treated and untreated regions and uses a simple cross-sectional regression framework,

𝐷𝑚 = 𝛼 + 𝛽𝑇𝑚 + 𝜖𝑚,

where 𝐷𝑚 is the deforestation rate in region 𝑚, 𝑇𝑚 is a binary variable reflecting whether the region

was treated, and 𝜖𝑚 is the error term, with 𝐸 [𝜖𝑚𝑇𝑚] = 0. In this setup, the researcher would use

the period four deforestation rates from these 100 regions in the estimation. This framework could
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easily be extended to difference-in-differences type regression analysis, but for simplicity we do

not here.

In Figure E15, we show the distribution of the estimated parameters 𝛼 (the baseline) and 𝛽 (the

“treatment effect”) from 100 Monte Carlo simulations. We consider three different scenarios:

Ground Truth. The estimated deforestation rate 𝐷𝑟 is based on ground truth. In the context of

the model, this is Pr[𝑆4 = 2|𝑆3 = 1].

HMM-ML. The estimated deforestation rate 𝐷𝑟 is based on the HMM maximum likelihood

estimate for Pr[𝑆4 = 2|𝑆3 = 1].

Observations. The estimated deforestation rate 𝐷𝑟 is based upon the raw classifier, without apply-

ing the HMM correction. In the context of the model, this corresponds to Pr[𝑌4 = 2|𝑌3 = 1].

We find that the ground truth data yields a precise and unbiased estimate of the true treatment

effect of 𝛽 = −0.1 and of the baseline 𝛼 = 0.2. The HMM-ML approach gives a precise estimate

of the baseline deforestation rate and a close to unbiased measure of the treatment effect. The raw

classifier yields biased estimates of the baseline deforestation rate and of the treatment effect, with

an estimated effect that is closer to zero than the truth. This further illustrates the point from Section

B.1 of this appendix that misclassifications can lead to biased parameter estimates in regressions,

even when the measurement error is in the dependent variable.

E Additional Details on the Carbon Stock Application

E.1 Distribution of Forest Age

In Figure E16, we plot the cumulative distributions of the forest age for both the raw and the

HMM-based approaches. The graph illustrates that the forest age predicted by the raw data is

significantly younger than that predicted by the HMM-based estimates. That is a direct result of

the high deforestation and reforestation rates obtained from the raw data: a pixel is more likely to
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be deforested and then reforested, leading to a young forest, while the HMM estimates suggest that

a pixel is less likely to be disturbed, resulting in older forests.

E.2 Relationship Between Carbon and Forest Age

We estimate the carbon stock for a given forest age using data on the 2017 carbon stock from

Englund et al. (2017) and our HMM-based estimates of forest age for each pixel. First, we show

informally the relationship between the carbon stock and the age of the forest for 2017 in Figure

E17. As expected, the graph shows an increase in the carbon stock as the forest age.44

Next, we estimate the following regression model:

𝑐𝑠𝑖 = 𝛼 + 𝛽 𝑓 𝑜𝑟𝑒𝑠𝑡𝑖 + 𝛾 𝑎𝑖 𝐼 (𝑎𝑖 < �̄�𝑚𝑎𝑥) 𝑓 𝑜𝑟𝑒𝑠𝑡𝑖 + 𝛿 𝐼 (𝑎𝑖 > �̄�𝑚𝑎𝑥) 𝑓 𝑜𝑟𝑒𝑠𝑡𝑖 + 𝑢𝑖,

where 𝑐𝑠𝑖 is the carbon stock of pixel 𝑖 in 2017; 𝑓 𝑜𝑟𝑒𝑠𝑡𝑖 is an indicator variable for whether the

pixel is classified as forest in 2017 in the HMM-Viterbi sequence; 𝑎𝑖 is the forest age of pixel 𝑖 in

2017 given from the HMM-Viterbi sequence; �̄�𝑚𝑎𝑥 is the maximum age we can detect given our

data (which corresponds to 32 years old); 𝐼 (.) is the indicator function; 𝑢𝑖 is an idiosyncratic error

term; and (𝛼, 𝛽, 𝛾, 𝛿) are the regression parameters.

In this regression, (a) we allow for forest to have a different baseline level of carbon from

non-forest, captured by the coefficient 𝛽; (b) we model a linear relationship between the age of the

forest (between 1-32 years old) and the carbon stock, captured by 𝛾; and (c) we allow for a different

mean level of carbon for forest that is over 32 years old (i.e., pixels that were classified as forest for

all years of our sample), captured by 𝛿.

The results are presented in Table E2. We find that the average baseline level of carbon in

forests is approximately 4 tons greater than in non-forest pixels. Every additional year the pixel

remains forested adds approximately 0.6 tons of carbon, on average. For forests that are over 32

years old, the average amount of carbon in a pixel is approximately 51.5 tons (= 𝛼 + 𝛽 + 𝛿).

44We do not include in this graph any points that were classified as forest for the entirety of our sample, since we
do not know their age.
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N=100 N=500 N=1000 N=10000
Freq MD ML Freq MD ML Freq MD ML Freq MD ML

Bias -0.076 -0.022 -0.031 -0.072 -0.013 -0.014 -0.070 -0.005 -0.008 -0.071 -0.002 -0.007
𝑃𝑆1 = .9 s.d. 0.039 0.081 0.057 0.018 0.038 0.028 0.012 0.024 0.020 0.004 0.007 0.008

RMSE 0.085 0.083 0.064 0.074 0.040 0.031 0.071 0.024 0.022 0.071 0.008 0.011

Bias 0.008 -0.018 -0.004 -0.008 -0.003 -0.006 -0.001 -0.004
Υ(2, 1) = .1 s.d. 0.053 0.040 0.018 0.014 0.011 0.010 0.004 0.004

RMSE 0.053 0.043 0.018 0.016 0.012 0.011 0.004 0.006

Bias 0.098 -0.058 -0.007 -0.025 -0.008 -0.020 -0.002 -0.006
Υ(1, 2) = .2 s.d. 0.198 0.108 0.096 0.059 0.051 0.044 0.017 0.017

RMSE 0.220 0.122 0.096 0.064 0.051 0.048 0.017 0.018

Bias 0.113 0.028 0.027 0.106 0.010 0.008 0.104 0.007 0.006 0.104 0.002 0.004
𝑃1(1, 2) = .04 s.d. 0.039 0.065 0.055 0.016 0.027 0.021 0.011 0.017 0.014 0.004 0.006 0.005

RMSE 0.120 0.070 0.061 0.107 0.028 0.022 0.105 0.018 0.015 0.104 0.006 0.006

Bias 0.528 0.149 0.189 0.540 0.081 0.115 0.539 0.056 0.090 0.543 0.023 0.069
𝑃1(2, 1) = .02 s.d. 0.136 0.227 0.219 0.058 0.135 0.123 0.040 0.090 0.081 0.012 0.049 0.041

RMSE 0.545 0.271 0.288 0.543 0.157 0.168 0.541 0.106 0.121 0.544 0.054 0.080

Bias 0.093 0.025 0.012 0.089 0.001 0.004 0.089 0.001 0.002 0.090 0.000 0.003
𝑃2(1, 2) = .1 s.d. 0.043 0.103 0.062 0.019 0.031 0.028 0.012 0.019 0.018 0.005 0.007 0.007

RMSE 0.103 0.105 0.063 0.091 0.031 0.028 0.090 0.018 0.018 0.090 0.007 0.007

Bias 0.479 0.113 0.104 0.474 0.045 0.049 0.468 0.032 0.036 0.468 0.006 0.018
𝑃2(2, 1) = .02 s.d. 0.120 0.192 0.154 0.052 0.082 0.070 0.037 0.067 0.047 0.011 0.026 0.016

RMSE 0.493 0.222 0.185 0.476 0.094 0.085 0.469 0.074 0.059 0.468 0.026 0.024

Bias 0.078 0.054 0.020 0.069 0.002 0.003 0.072 0.002 0.005 0.072 0.001 0.004
𝑃3(1, 2) = .2 s.d. 0.057 0.152 0.083 0.022 0.049 0.036 0.017 0.029 0.026 0.005 0.009 0.009

RMSE 0.096 0.160 0.085 0.072 0.049 0.036 0.074 0.029 0.026 0.072 0.010 0.010

Bias 0.352 0.062 0.089 0.359 0.044 0.046 0.363 0.025 0.040 0.363 0.006 0.021
𝑃3(2, 1) = .02 s.d. 0.097 0.141 0.127 0.040 0.089 0.072 0.029 0.057 0.053 0.009 0.024 0.019

RMSE 0.365 0.154 0.154 0.361 0.098 0.085 0.364 0.062 0.066 0.364 0.025 0.028

Table E1: Baseline Monte Carlo Simulation Results
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Carbon Stock
𝛼 8.941∗∗∗

(0.009)

𝛽 4.115∗∗∗
(0.039)

𝛾 0.630∗∗∗
(0.002)

𝛿 38.432∗∗∗
(0.042)

Observations 11,770,123
R2 0.317

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data as described in text. Regression uses data from 2017.

Table E2: Relationship Between Carbon Stock and Forest Age

Figure E1: Map of Mato Grosso State and the Embrapa Sample Points
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Figure E2: Map of Brazil and the Mapbiomas Sample Points, in the Brazilian Atlantic Forest
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(a) Transition Probability, Pr[𝑆𝑖𝑡+1 = 2|𝑆𝑖𝑡 = 1], for 𝑡 = 1, 2, 3

(b)Misclassification Probability, Pr[𝑌𝑖𝑡 = 2|𝑆𝑖𝑡 = 1]

Figure E3: Baseline Monte Carlo Simulation Results
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(a) Transition Probability, Pr[𝑆𝑖𝑡+1 = 2|𝑆𝑖𝑡 = 1], for 𝑡 = 1, 2, 3

(b)Misclassification Probability, Pr[𝑌𝑖𝑡 = 2|𝑆𝑖𝑡 = 1]

Figure E4: Baseline Monte Carlo Simulation Results
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(a) Transition Probability

(b)Misclassification Probability

Figure E5: Monte Carlo Results for Varying Misclassification Probabilities
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(a) Transition Probability

(b)Misclassification Probability

Figure E6: Monte Carlo Results for Varying Transition Probabilities
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(a) Distribution of True Land Use, 𝑆𝑖𝑡

(b) Distribution of Observed Land Use, 𝑌𝑖𝑡

Figure E7: Monte Carlo: Spatially Correlated Land Use, an Example
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(a) Transition Probabilities

(b)Misclassification Probabilities

Figure E8: Monte Carlo: Spatially Correlated Land Use Results
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(a) Distribution of True Land Use, 𝑆𝑖𝑡

(b) Distribution of 𝑍𝑖𝑡

(c) Distribution of Observed Land Use, 𝑌𝑖𝑡

Figure E9: Monte Carlo: Spatially Correlated Land Use and Misclassifications, an Example
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(a) Transition Probabilities

(b)Misclassification Probabilities

Figure E10: Monte Carlo: Spatially Correlated Land Use and Misclassifications Results
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(a) Distribution of True Land Use, 𝑆𝑖𝑡

(b) Distribution of 𝑍𝑖𝑡

(c) Distribution of Observed Land Use, 𝑌𝑖𝑡

Figure E11: Monte Carlo: Spatially Correlated Land Use and Serially Correlated Misclassifications, an
Example 77



(a) Transition Probabilities

(b)Misclassification Probabilities

Figure E12: Monte Carlo: Spatially Correlated Land Use and Serially Correlated Misclassifications Results
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(a) Distribution of True Land Use, 𝑆𝑖𝑡

(b) Distribution of 𝑍𝑖𝑡

(c) Distribution of Observed Land Use, 𝑌𝑖𝑡

Figure E13: Monte Carlo: Spatially Correlated Land Use, and Spatially and Serially Correlated Misclassi-
fications, an Example 79



(a) Transition Probabilities

(b)Misclassification Probabilities

Figure E14: Monte Carlo: Spatially Correlated Land Use, and Spatially and Serially Correlated Misclassi-
fications Results
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Figure E15: Regression Monte Carlo Results

Figure E16: Forest Age Distribution
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Figure E17: Carbon Stock by Age of Forest
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