
Optimal Environmental Targeting

in the Amazon Rainforest*

Juliano Assunção, Robert McMillan, Joshua Murphy, and Eduardo Souza-Rodrigues�

March 26, 2022

Abstract

This paper sets out a data-driven approach for targeting environmental policies optimally in

order to combat deforestation. We focus on the Amazon, the world’s most extensive rainforest,

where Brazil’s federal government issued a ‘Priority List’ of municipalities in 2008 – a blacklist to

be targeted with more intense environmental monitoring and enforcement. First, we estimate the

causal impact of the Priority List on deforestation (along with other relevant treatment effects)

using ‘changes-in-changes’ (Athey and Imbens, 2006), finding that it reduced deforestation by 43

percent and cut emissions by 49 million tons of carbon. Second, we develop a novel framework for

computing targeted optimal blacklists that draws on our treatment effect estimates, assigning

municipalities to a counterfactual list that minimizes total deforestation subject to realistic

resource constraints. We show that the ex-post optimal list would result in carbon emissions
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over 10 percent lower than the actual list, amounting to savings of more than $1.29 billion

(36% of the total value of the Priority List), with emissions over 23 percent lower on average

than a randomly selected list. The approach we propose is relevant both for assessing targeted

counterfactual policies to reduce deforestation and for quantifying the impacts of policy targeting

more generally.

Keywords: Policy Targeting, Optimal Regulation, Monitoring, Deforestation, Amazon, Carbon

Emissions, Changes-in-Changes, Resource Constraints, Partial Identification, Minimax Ambi-

guity

1 Introduction

In many developing countries, the effective implementation of environmental policies is undercut

by weak institutions, as recent research has documented clearly (see, e.g., Greenstone and Jack,

2015). The resulting unregulated and often-illegal activities that prevail can cause severe duress

to fragile ecosystems, leading to outcomes that are both damaging and inefficient. As a prominent

instance of this phenomenon, several studies (notably by Burgess et al., 2012) have highlighted the

role of illegal logging and land clearing as drivers of tropical deforestation, widely understood to

be a critical contributor to global carbon emissions (see IPCC, 2013). In settings such as these

where existing institutions are over-stretched, targeted monitoring and enforcement policies may be

advantageous, helping to focus limited resources where they can have higher-than-average impacts.

This paper measures the causal effects of blacklist-type government regulations – a widespread

form of targeting – and then explores how such targeted regulations can be optimized. It does so

in the context of deforestation, focusing on the Amazon, the world’s most extensive rainforest and

a vitally important ecosystem, whose fundamental roles in storing carbon, conserving biodiversity,

maintaining water quality and even modulating the Earth’s climate are well established (Foley

et al., 2005; Bonan, 2008). Deforestation in the Amazon has been a source of international concern

for at least the past 30 years, spurring regulatory activity on the part of Brazil’s federal government

in particular. Regulations introduced in Brazil coincided with a marked slowdown in deforestation

between 2004 and 2017, with the annual deforested area falling by 75 percent.1 As other factors

may have been responsible for this decline, changing commodity prices among them, policy makers

are interested in understanding the efficacy of actual regulations in reducing deforestation, and how

such regulations might be further refined. Yet the literature has not supplied a means to assess, in

a systematic quantitative way, which policy configurations would be likely to have most impact in

1Annual deforestation has risen more recently, approaching rates last seen in 2008.
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limiting future deforestation given relevant constraints. Filling that gap is the central task of this

paper.

Our analysis is built around an important regulatory change that occurred in 2008, when Brazil’s

federal government issued a blacklist of 36 municipalities (out of a total of 524) with especially high

levels of deforestation – the so-called ‘Priority List.’ The listed municipalities were to be the

focus of more rigorous monitoring and stricter penalties, with the list being renewed every year

subsequently.

The paper’s first goal is to estimate the causal treatment effect of the Priority List on defor-

estation in the Brazilian Amazon. We do so over the period 2006-2010. Given the official criteria

did not specify exactly how the list was chosen, we start by investigating the effective selection pro-

cedure that assigned municipalities to the Priority List. The patterns we find in the data indicate

that the federal government adhered closely to a threshold rule; indeed, we are able to replicate the

actual 2008 assignments with 98 percent accuracy using only the inferred rule. The rule essentially

separates municipalities based on their deforestation levels but not on their trends: comparing mu-

nicipalities on the list (versus not) leading up to the reform’s introduction supports the assumption

of common trends.

Based on that evidence, one could use a standard difference-in-differences (‘DID’) model to

estimate the impact of the reform, noting that other commonly-used treatment effect estimation

strategies – matching, regression discontinuity, and instrumental variables – are problematic in

light of the threshold rule (as we explain in Section 4).2 Instead, our approach is to implement

the changes-in-changes (‘CIC’) model proposed by Athey and Imbens (2006) (henceforth ‘A&I’),

a nonlinear generalization of the DID model to the entire distribution of potential outcomes. In a

policy evaluation context with pre- and post-policy periods, A&I show how the difference in the

distribution functions of the untreated group before and after treatment can be combined with the

distribution function of the treated group before treatment to predict the hypothetical distribution

of the treated group in the post-treatment period, absent treatment. (In standard DID, we note

the adjustments are to the average, not to the entire distribution function, and are implemented

linearly.) Similarly, the counterfactual distribution function of the effects of treatment on the

untreated can also be recovered.

Given these features, the CIC model is appealing in our context for two main reasons. First,

it can accommodate the possibility that the Priority List was implemented (as is likely) on the

group with potentially higher average benefits.3 Treatment effects are allowed to be heterogeneous

2Concerning a regression discontinuity approach, for instance, there are few observations close to the threshold
frontier, which limits the accuracy of such a strategy. In addition, a regression discontinuity design does not identify
the policy treatment effect of interest in this paper.

3The official criteria to enter the Priority List reflect the assumption that deforestation is a persistent process:
highly deforested locations in the past are expected to be more likely to be deforested in the future, so concentrating
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across units – municipalities in our application – and across treatment and control groups, given

the two counterfactual distributions can be arbitrarily different. Second, we can estimate the policy

impacts on the untreated (the average treatment on the untreated, or ‘ATU’), which is necessary

when trying to shed light on optimal targeting (our second goal, looking ahead). In contrast, a

DID strategy will only identify treatment effects on the treated (the ‘ATT’) in the presence of

heterogeneous effects.4

In terms of the main treatment effect results, we find that the Priority List caused substantial

reductions in the deforestation rate, cutting it by 43 percent in the short term (the period 2009–

2010) relative to the case in which no program was enacted. This reduction amounted to avoided

emissions of 34.6 million tons of carbon, with a social benefit of around $2.5 billion, assuming a

conservative social cost of carbon of $20/tCO2 (Greenstone et al., 2013; Nordhaus, 2014).5 Further,

there is evidence of heterogeneous treatment effects, with the average effect on the untreated being

between 10 and 14 percent of the estimated effect on the treated.6

We also investigate the possibility that the Priority List generated spillovers, which we think of

as the indirect effects of the policy on municipalities that were not treated directly. For example,

farmers in untreated municipalities that were geographically close to a Priority municipality and

that had experienced substantial deforestation in the past might think monitoring could increase

there also, thus modifying their behavior. Accordingly, we split the untreated group in two (labelled

the ‘spillover’ and ‘control’ groups), depending on whether untreated municipalities were more or

less likely to react to the policy intervention, based on proximity and prior deforestation.

Estimates of the CIC model provide evidence of spillover effects, with the spillover group re-

ducing deforestation in response to the intervention: the treatment effect for this group is smaller

than the effect on the treated, but greater than the effect on the control group. Once we account

for spillovers, 3,050 km2 of deforestation were avoided in Priority municipalities directly, and 1,102

km2 in the spillover group, totalling 4,152 km2 of forested area preserved in 2009-2010 as a result

of the program. The total avoided emissions amounted to 49 million tons of carbon, with a social

benefit of approximately $3.63 billion. A realistic assessment of the monitoring costs of the program

points to a benefit-cost ratio in excess of 30, which is extraordinarily high by any usual standard.

The paper’s second goal is to look beyond the actual policy and compare the Priority List with

an ex-post optimal blacklist. To this end, we develop a framework for exploring the assignment

of municipalities to an optimized counterfactual list based on information about treatment effects

regulatory effort in highly deforested areas may result in more substantial reductions in total deforestation.
4Extrapolating results from the treated group to the untreated under the assumption of homogeneous effects

would bias the estimated effects on the untreated and make any ex-post policy calculations unreliable.
5This is likely to be a lower bound. Using the EPA’s recommended current social cost of carbon estimate would

more than double the estimated social benefit.
6Although data limitations prevent us from point-identifying the treatment on the untreated, the estimated effect

on the untreated is partially identified with informatively narrow identified sets.
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drawn from the first part of the analysis. A key benefit of the framework is that it allows us

to investigate how knowledge of treatment effects – perhaps only partial in nature – can lead

systematically to better-targeted conservation policies.

Here we suppose the federal policy maker assigns municipalities to a counterfactual list with

the objective of minimizing either total deforestation (very much in line with the original goal

of the Priority List itself) or total carbon emissions; a variety of other social objectives can also

be accommodated. The policy maker’s decision is analyzed as a treatment choice problem under

ambiguity – appropriate given that some treatment effects are not point-identified – and we use

the minimax criterion, assuming the policy maker chooses the ex-post list in order to achieve the

best of the worst outcomes (see Manski, 2000, 2005). Further, to incorporate limited monitoring

resources into the minimization problem, we consider two alternative constraints, one restricting

the total area that can be monitored, and the other, the total number of municipalities on the list.7

Accounting for spillover effects, we show that the Priority List resulted in carbon emissions

that were at least 12 percent higher than the ex-post optimal lists (under either constraint), while

randomly selected lists of municipalities would result in emissions that were over 30 percent higher

on average. The avoided emissions translate into a lower bound for the additional social value of

the optimal list when compared to the Priority List of approximately $1.29 billion over the period

2009-2010: this lower bound is approximately 36% of the total value of the Priority List.

The geographic distributions of the optimal lists reveal interesting patterns not imposed dur-

ing estimation. First, the overlap between pre-existing protected areas and the area-constrained

counterfactual list is much lower than that between protected areas and the original Priority List,

suggesting that these two existing policies could have been made to work together more effectively.8

Second, ignoring spillover effects, the area-constrained counterfactual list is relatively contiguous

and forms a protective shield close to the deforestation frontier, which may impede the deforesta-

tion process from continuing into more pristine areas, yielding longer-term benefits. Third, when

accounting for spillovers, the area-constrained optimal list becomes more geographically dispersed

and less contiguous; intuitively, placing all targeted municipalities together fails to exploit the

potential reduction in deforestation in adjacent locations due to spillovers.

Beyond the current application, the approach we develop is relevant for assessing counterfactual

targeted policies to reduce deforestation in other contexts, based around actual policy interventions.

Those interventions can be used to recover heterogeneous policy impacts, our approach then al-

lowing researchers to trace out the quantitative implications for forest cover and carbon emissions

7We set the constraints at the same values as those corresponding to the Priority List, then investigate the effects
of relaxing these constraints. While information about the resources effectively allocated to monitoring is very difficult
to obtain, it is nevertheless reasonable to presume that the larger the area monitored or the greater the number of
municipalities monitored, the higher the monitoring costs would be.

8A similar implication can be drawn from evidence that compares protected area policies and payments for
ecological services from Mexico (see Alix-Garcia et al., 2015).
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when policy makers face realistic resource constraints and knowledge of only partially identified

estimates. The approach also offers a coherent framework for assessing the quantitative impacts

of policy targeting more generally, as we discuss below, using credible estimates based on flexible

treatment effects estimation.

The rest of the paper is organized as follows: The next section places our analysis in the

context of the existing literature. Section 3 sets out relevant institutional background; Section

4 describes the data, along with descriptive evidence motivating the empirical model, which is

then presented in Section 5. We provide model estimates in Section 6. Section 7 develops our

counterfactual framework and presents results from the counterfactual targeting exercises, and

Section 8 concludes.9

2 Relation to the Literature

Our paper contributes to four main areas of research. The first is a growing body of work examining

the implementation of environmental policies in a developing country context: see Greenstone and

Jack (2015) for a recent survey. This is a complement to the vast literature that studies such policies

in a developed country context (see, e.g., the survey by Gray and Shimshack, 2011). Greenstone and

Hanna (2014) argue that weak institutional arrangements in developing countries pose obstacles to

effective law enforcement, showing that policies targeting improvements in air and water quality

in India had varying degrees of success. In the case of climate issues, very much linked to the

deforestation process analyzed in this paper, the available evidence is limited (Burke et al., 2016).

Our analysis examines a widespread form of targeting and connects the causal impacts of targeting

policies to the release of carbon into the atmosphere, thus contributing to both lines of research.10

Second, several papers examine the impact of monitoring and the role of institutions in the

Amazon itself, notably Assunção et al. (2017), Assunção et al. (2019), and Burgess et al. (2019).

Payments for ecological services programs have also been studied, as alternatives to command-and-

control policies by Alix-Garcia et al. (2015), Jayachandran et al. (2017), Jack and Jayachandran

(2018), and Simonet et al. (2019). Compared with these papers, our analysis examines the effective-

ness of an optimized counterfactual policy-targeting strategy as a way of overcoming institutional

and political obstacles. This type of targeted strategy can be applied in other contexts that en-

9The paper’s Supplemental Material includes: (a) information about data sources and the construction of key
variables; (b) a discussion of the Priority List selection equation; (c) evidence of possible channels linking the Priority
List to deforestation; (d) a comparison of the CIC and DID models and resulting estimates; (e) how we incorpo-
rate dynamic treatment effects into our calculations; (f) an explanation of how the counterfactual optimal lists are
computed in practice; and (g) several robustness exercises.

10Our approach also complements an earlier theoretical literature in environmental economics studying targeted
regulatory strategies – see Harrington (1988) and Friesen (2003). We show how a regulator can target resources in
an optimal way subject to realistic constraints using credible treatment effect estimates. Our approach allows the
associated benefits to be quantified directly, on the basis of econometric evidence.
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compass a substantial portion of global rainforest cover – in other parts of Amazonia, the Congo

and Southeast Asia.11

Within the Amazon context, several recent papers have examined the effects of the Priority

List: Arima et al. (2014), Cisneros et al. (2015), Andrade and Chagas (2016), Assunção and Rocha

(2019), Koch et al. (2019), and Harding et al. (2021). Those studies use difference-in-differences

and matching methods to obtain average treatment effects on the treated similar in magnitude to

the corresponding estimates in our study. In contrast to those papers, our estimation approach

using changes-in-changes allows us to recover the effects of treatment on the untreated, which we

use in computing optimally targeted blacklists.

A third main strand of literature investigates the underlying causes of land use change, tropical

deforestation being one important instance. This literature has considered changes in population,

infrastructure, agricultural prices, political economy factors and climate-related phenomena.12 Our

results indicate that monitoring policies are important drivers of land use change and deforestation,

affecting not only the municipalities that are targeted directly but also generating spillovers for

neighboring areas.

Fourth, our counterfactual analysis draws on a burgeoning literature in econometrics studying

treatment choice under ambiguity. Our paper is close in spirt to Manski (2000, 2006, 2010), Cassidy

and Manski (2019), and Manski et al. (2021), in which decision-making under ambiguity stems

from partial identification of treatment effects.13 Few empirical applications have appeared thus

far, aside from some empirical illustrations presented in existing methodological papers.14 In an

applied econometric context, our analysis is novel in that there is no study in which all the following

hold simultaneously: (a) unconfoundedness assumptions fail, so that the treatment effects and the

welfare objective function are partially identified; (b) the estimation of treatment effects accounts

for violations of the ‘Stable Unit Treatment Value Assumption’ (or SUTVA); (c) the treatment

choice is made under ambiguity (and also allows for spillover effects, again in violation of SUTVA);

and (d) the set of admissible policies must satisfy binding capacity constraints.

11Jack and Jayachandran (2018) consider how targeting could be incorporated into the design of payments for
ecological services (through manipulation of enrollment costs) to improve the cost-effectiveness of such programs.
Targeting social programs in contexts other than environmental conservation is of broad interest; see, e.g., Hanna
and Olken (2018) for a comprehensive discussion in the context of cash transfer programs to reduce poverty.

12See Stavins (1999), Pfaff (1999), Andersen et al. (2002), Mason and Platinga (2013), and Souza-Rodrigues
(2019), among others.

13This is in contrast to another important line of research that focuses on Wald’s statistical decision theory, in
which ambiguity stems from sampling variation. Important work in that area includes Manski (2004), Bhattacharya
and Dupas (2012), and Kitagawa and Tetenov (2018), among others – see the survey by Hirano and Porter (2020).

14One important empirical study is the analysis by Dehejia (2005), who examines the Greater Avenues for Inde-
pendence (GAIN) program that began in California in 1986.
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3 Institutional Background and Regulations

Our setting is the Brazilian Amazon, which accounts for two-thirds of the Amazon Rainforest and

is itself a vast area, almost ten times the size of California. Prior to the 1960s, this area was barely

occupied; access was open, and local economic activities were based largely on subsistence and the

extraction of rubber and Brazil nuts (for more detail, see e.g., Souza-Rodrigues (2019)). During the

1960s and 1970s, Brazil’s military dictatorship promoted the occupation of the Amazon with the

explicit goals of securing national borders and developing the region, although economic recession

and hyperinflation in the 1980s led government investment to be cut. In the late-1980s, ecological

concerns started to shape policies in the region, with IBAMA (the Brazilian Environmental Pro-

tection Agency) being set up in 1989, acting as the national environmental police authority tasked

with investigating and sanctioning environmental infractions.

In terms of the legal environment, around half the Amazon is protected – either indigenous land

or conservation units such as national parks, extractive reserves, and areas of ecological interest.

Deforestation in those areas is subject to strict regulations. The rest of the Amazon comprises

undesignated public land where no deforestation is allowed, or private land, which accounts for

approximately 20 percent of the total area (according to the Agricultural Census of 2006), where

deforestation has to follow the rules of the so-called Forest Code. This code states that farms in

the Amazon must preserve 80 percent of their area in the form of native vegetation, among other

requirements. While deforestation on private land can be legal if it is both authorized and accords

with the Forest Code, empirical evidence suggests that compliance with the code is limited (Borner

et al., 2014; Rajão et al., 2020), and that most deforestation in the Amazon is illegal.

Regarding environmental monitoring, IBAMA’s operations in the Amazon up to the mid-2000s

were based largely on information collected and processed by IBAMA’s headquarters and regional

offices; land and air patrols used at the time proved limited in their effectiveness given the sheer

extent of the area covered and risks posed to law enforcers. The adoption of satellite-based mon-

itoring from the mid-2000s onward improved patrolling capabilities considerably. New monitoring

procedures were set out in the first stage of the Action Plan for the Prevention and Control of

Deforestation in the Legal Amazon (PPCDAm), launched in 2004.15 Central to PPCDAm law en-

forcement was the use of high-frequency remote sensing technology in the form of a satellite-based

system, DETER, developed by the Brazilian Institute for Space Research (INPE). This greatly in-

creased the capacity to monitor forest-clearing activities in the Amazon, allowing land use images

to be processed on a frequent basis, detecting areas experiencing a loss of forest cover, and in turn

triggering DETER deforestation alerts for the attention of law enforcers. Since its introduction,

15The PPCDAm also led to the expansion of protected areas, mostly during its first phase (spanning 2004–2007),
before the first municipalities were assigned to the Priority List in 2008.
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this satellite-based system has had a significant impact in slowing deforestation, with Assunção

et al. (2017) estimating deforestation would have been over 3.6 times higher in the absence of the

system.

The Priority List. In 2008, the government launched the second phase of the PPCDAm, cre-

ating a blacklist to better target regulatory effort in order to combat illegal deforestation. Any

Amazon municipality could be added to what became known as the ‘Munićıpios Prioritários’ List

(for convenience, the ‘Priority List’). Municipality-level selection criteria for this list were based on

(1) total deforested area, (2) total deforested area over the past three years, and (3) the increase in

the deforestation rate in at least three of the past five years; the exact rules have to be inferred as

they are not in the public domain.16 Municipalities placed on the Priority List were then subject to

more intense environmental monitoring and law enforcement, as well as a raft of costly regulations

(MMA, 2009).17

The Ministry of the Environment’s Ordinance 28, issued in January 2008, listed 36 municipalities

making up the initial Priority List – 7 percent of the total number of municipalities in the Brazilian

Amazon. The original list was expanded to include an additional seven municipalities in 2009. Six

more were placed on the list in 2011, followed by a further two in 2012. By that stage, just six

municipalities had been removed from the list (one in 2010, a second in 2011, and four in 2012), and

a further eight municipalities were then added in 2017. In total, 59 municipalities were eventually

placed on the Priority List between 2008 and 2017, while 467 municipalities were never placed on

it during the same interval.

4 Data and Descriptive Evidence

To study the impacts of the targeting policy, we have assembled a municipality-year panel data set

that combines information about Priority status, land use, and other possible determinants of de-

forestation. Our analysis focuses on the time period 2006 to 2010, with the pre-treatment covering

2006 and 2007, and the post-treatment years being 2009 and 2010.18 The official list of Priority

municipalities comes from the Ministry of the Environment, the treatment group comprising mu-

nicipalities that entered and remained on the list from 2008 to 2010 inclusive. This gives a total of

16The legal basis for targeting certain municipalities was set out in the Presidential Decree 6,321 in December
2007. Exiting the Priority List depended on reducing deforestation in a significant way and having at least 80 percent
of the municipal private area registered in the Rural Environmental Registry system (Arima et al., 2014).

17These included more stringent conditions applying to the approval of subsidized credit contracts, and the re-
quirement to develop local plans for sustainable production (see Maia et al., 2011). Private land titles were also
revised in a bid to identify fraudulent documentation and illegal occupancy, and licensing requirements were made
stricter for rural establishments.

18Comparing deforestation before the first phase of the PPCDAm in 2004 and after the implementation of the
Priority List would capture the combined effects of both regulatory changes.
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35 municipalities, as one exited in 2010. The untreated group consists of the set of municipalities

that did not enter the list before 2010.19

Our municipality-year panel includes annual measures of the incremental deforestation, cumu-

lative deforestation, and forested area remaining in each municipality; these are all drawn from

the Brazilian government’s satellite-based forest monitoring program, PRODES. Factors affecting

deforestation in our dataset, other than being on the Priority List, include rainfall and tempera-

ture (generated by Matsuura and Willmott, 2012), protected areas (from the National Register of

Conservation Units, maintained by the Brazilian Ministry of the Environment), prices of beef and

crops (from the State Secretariat for Agriculture and Food Supply), ‘local’ gross domestic prod-

uct (from the Brazilian Institute of Geography and Statistics, IBGE), soil quality (as measured

by FAO-GAEZ agricultural suitability indices), and distance to the nearest port (from the 2006

National Highway Plan from the Brazilian Ministry of Transportation). We have also assembled

data on crop area and the number of cattle (based on the Municipal Crop Survey and the Munic-

ipal Livestock Survey, produced by IBGE), deforestation alerts (from the Real-Time System for

the Detection of Deforestation, DETER), fines issued (from IBAMA), and measures of the above-

ground carbon stock (calculated by Baccini et al., 2012). We dropped observations with minimal

remaining available forested area (less than 6 km2) – small municipalities mostly located at the

extreme eastern and southeastern regions of the Amazon Biome, which are not especially relevant

for policies focused on preventing deforestation. In total, we have a balanced panel of 490 (out

of a possible 524) municipalities within the Amazon Biome. (For further information about data

sources and the construction of key variables, see Section A of the Supplemental Material.)

Around 20 percent of the Brazilian Amazon had been deforested to date – over 700,000 square

kilometres, an enormous area (larger than Texas, for example). Cleared areas are used mainly

for agriculture: approximately two-thirds of the deforested area comprises pasture, and around 8

percent is used for crops – see Almeida et al. (2016).20 The evolution of deforestation is shown in

Figure 1, revealing two pronounced downward steps coinciding with the start of the main phases of

the PPCDAm, in 2004 and 2008 (indicated by the two vertical lines), with the deforestation rate

then stabilizing over the next five years. In total, annual deforestation declined by approximately

75 percent over the period 2004-17.21 The figure also presents initial evidence relating deforestation

19We focus on the initial list for two reasons. First, the calculation of the optimal list requires estimates of
treatment effects conditional on covariates for individual units, yet combining groups of units that received treatment
at different times in the estimation procedure would yield a weighted sum of different estimated average treatment
effects (see, e.g., Goodman-Bacon, 2018), biasing our analyses of the counterfactual optimal list. Second, while in
principle it might be possible to estimate causal effects that varied according to the year municipalities were placed
on (or taken off) the list, few municipalities entered or exited from 2009 on, so there is not much that can be said
with any accuracy about policy impacts in those cases.

20Almeida et al. (2016) also show that 20 percent of the cleared area currently takes the form of secondary
vegetation. The remaining areas consist of mining, urban areas, ‘unobserved’ (i.e., areas whose land usage cannot be
interpreted due to cloud cover or smoke from recent forest burning), and ‘other.’

21Total incremental deforestation by year is shown in Table H1 in the Supplemental Material, together with other
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to possible contributing factors. Trends in the international prices of soybeans and beef (measured

on the rightmost vertical axis) suggest a positive correlation between deforestation and prices prior

to 2008; this accords with the fact that most of the deforested area in the Brazilian Amazon is used

for pasture (grazing cattle being reared mainly for beef) and crops (primarily soybeans and corn).

After 2008, the correlation appears to be much weaker, consistent with the notion that the Priority

List helped to preserve the rainforest even when international prices were rising.

The location of the municipalities on the Priority List within the Amazon is displayed in panel

(a) of Figure 4; panel (b) shows the Priority List together with protected areas. Those municipalities

are found mostly in the Amazon’s southern and eastern regions (“the Arc of Deforestation”). Figure

2 shows where incremental deforestation occurred in 2006 and 2010 (the first and the last years used

in our econometric analysis), together with Priority municipalities overlaid. It draws attention to

the geographically persistent nature of the deforestation process, similar patterns holding in other

years of the sample period. The geographic persistence suggests that a targeted policy might

be effective, concentrating monitoring and enforcement in locations where deforestation was more

likely to occur.

Selection onto the Priority List. The Priority status of a municipality depends on three official

selection criteria (as noted): (1) the total amount of forested land cleared in municipality m from

its inception up to and including year t − 1 (which we label Z1
mt−1); (2) the amount of forested

land cleared in municipality m in the three-year period ending in year t − 1 (Z2
mt−1); and (3) an

indicator showing whether municipality m experienced year-on-year growth in new deforestation

at least three times in the five-year period ending with year t − 1 (Z3
mt−1). The first two criteria

relate to longer-run and more recent deforestation, respectively, while the third captures whether

deforestation accelerated in recent years.

Under the assumption that these variables fully determine Priority status, the selection equation

can be written, generally, as:

Gmt = g
(
Z1
mt−1, Z

2
mt−1, Z

3
mt−1

)
, (1)

where the indicator Gmt ∈ {0, 1} captures whether municipality m is on the Priority List in year t

or not. As the precise rules determining selection are not stated publicly, we seek to infer them by

exploring the extent to which Priority status is determined by the vector summarizing the three

criteria, Zmt−1 ≡
(
Z1
mt−1, Z

2
mt−1, Z

3
mt−1

)
.

Figure 3 plots all combinations of Z1
mt−1 and Z2

mt−1 for a given value Z3
mt−1: the scatterplot

in panel (a) holds Z3
mt−1 = 0, while the scatterplot in panel (b) holds Z3

mt−1 = 1. In both panels,

information – the number of fines issued, the annual expansion of protected areas, and the number of municipalities
added to the Priority List.
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municipality-year observations with Gmt = 0 (i.e., not on the list) and Gmt = 1 (on the list) are

marked with crosses and dots, respectively. The two panels indicate that regulators adhered closely

to a threshold rule involving the first and second criteria: both Z1
m2007 and Z2

m2007 had to cross

pre-determined thresholds in order for municipality m to qualify for the Priority List, while the

third criterion (whether deforestation accelerated in recent years) is not important. Specifically,

the thresholds drawn in both panels of Figure 3 are 2,137 km2 for Z1
mt−1 and 222 km2 for Z2

mt−1.

Using only these inferred thresholds, we are able to replicate the actual 2008 assignments with 98

percent accuracy – evidence that a strict threshold selection rule was followed in practice.22

One important consequence of this threshold rule being followed is that additional factors such

as local political influence are unlikely to lead to manipulation close to the relevant thresholds that

determine the Priority List’s initial composition. This is perhaps surprising, given evidence that

corruption is an important and widespread problem in Brazil, with well-documented consequences

for deforestation – see, for example, Cisneros et al. (2013). We also find that the fraction of

municipalities in which the mayor is affiliated with the political coalition of the Brazilian President

is the same among Priority and non-Priority municipalities (approximately 40 percent in each

group), suggesting the policy was not used as punishment against political enemies at the local

level.23

The empirical form taken by the selection function g(·) also has implications for the viability of

several widely-used identification strategies. Because there is very little overlap in the data among

Priority and non-Priority groups given Zmt−1, selection-on-observables techniques (e.g., propensity

score matching) are problematic in this context. The applicability of regression discontinuity (RD)

designs also runs up against the fact that there are few observations close to the threshold frontier

(in addition to which an RD does not identify the policy treatment effect of interest in this paper).

Further, while the criteria variables in Zmt−1 might seem to be natural instruments for Priority

status, they are invalid when the unobservables affecting deforestation decisions are serially cor-

related. These considerations will help motivate the estimation approach presented in the next

section.

Spillovers. In the main analysis, we consider the possibility that the Priority List generated

spillovers – that is, indirect impacts on municipalities that were not treated directly by the Priority

List. Such spillovers could work in at least two distinct ways. On the one hand, by concentrating

monitoring in areas where a disproportionate amount of deforestation occurred (so-called ‘hot

22These thresholds were estimated using a classification tree algorithm; see Section B of the Supplement for details.
23We are grateful to Fernanda Brollo for generously sharing the political coalition data. Of note, Pailler (2018)

finds that, on average, deforestation rates increase in election years when an incumbent mayor runs for re-election (in
our setting, 2008 was a mayoral election year), and finds no significant changes to deforestation in the years leading
up to, or following, the election year. This suggests that re-election incentives did not affect deforestation during the
pre-treatment period (2006-2007) nor during the post-treatment years (2009-2010).
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spots’), the intervention might simply shift deforestation rather than reduce it, depending on the

costs involved – the problem of ‘leakage’ in the regulation literature. On the other hand, farmers in

untreated municipalities might deforest less if they expected the intervention to increase monitoring

in non-targeted locations, reasonable given that regulators could benefit from spatial economies of

scale in monitoring and also might place highly deforested municipalities on the blacklist in the

near future.

As a precursor to investigating whether spillovers are present, we split the untreated group in

two according to whether such municipalities are more or less likely to react to the policy inter-

vention. Specifically, we consider two plausible conditions for designating ‘spillover’ municipalities:

whether a municipality (i) shares a border with a treated municipality, and (ii) it had high levels

of deforestation historically. We define the second condition on the basis of the threshold criteria

that were (implicitly) adopted by the Brazilian government, shown in Figure 3.24 The group of

untreated municipalities satisfying both conditions – being a neighbor of a Priority municipality

and having high levels of past deforestation – is then designated the ‘spillover’ group.25

Comparing Treated versus Untreated Municipalities. Next, we compare Priority and non-

Priority municipalities. We first consider a ‘baseline’ cross section from 2007, right before the

policy’s introduction, grouping all untreated municipalities together.

Table 1 shows the summary statistics. It makes clear that treated and untreated groups differ

in important ways, as expected. In Priority municipalities, incremental deforestation and total

historical deforestation – the first selection criterion considered by the Ministry of the Environment

when assigning Priority status – are higher. Priority municipalities are also larger and have higher

local agricultural GDP, higher carbon stocks per hectare, and are subject to more stringent policy

measures.

When we break the untreated municipalities further into ‘Spillover’ and ‘Control’ groups, the

summary statistics in the table confirm that the spillover group falls between the treated and

control groups in virtually all instances. In terms of the evolution of deforestation, the profiles

across the three groups are similar, especially after 2005, and present no signs of any anticipation

effects. (See Figure H6 in the Supplemental Material, which presents (a) deforestation in levels and

(b) the log odds ratio of deforestation shares across the three groups – the outcome variable in our

empirical framework, as explained below in Section 5.) To summarize: while deforestation slowed

down for all three groups after 2008, the slowdown among Priority municipalities is more prominent

24That is, a municipality is deemed to have ‘high levels of historical deforestation’ if Z1
mt−1 and Z2

mt−1 exceed 70
percent of the thresholds – that is, whether Z1

mt−1 ≥ 0.7× 2, 137 km2 and Z2
mt−1 ≥ 0.7× 222 km2.

25The empirical results presented in Sections 6 and 7 are robust to diffferent definitions of how close past deforesta-
tion is to the threshold criteria (see the Supplemental Material, Section G). Municipalities with deforestation levels
near the selection thresholds but without a treated neighbor might also react to the Priority List in anticipation of
stricter monitoring, yet only 4 municipalities satisfy this condition, so we cannot split the untreated group further.
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than for spillover units which, in turn, is more pronounced than for control units. The evidence

supports the view that the selection rule effectively separated municipalities based on their levels

of deforestation shares but not on their trends: that is, the third selection criterion, Z3
mt−1, does

not help predict Priority status (as already noted).

5 Empirical Framework

In this section, we present an empirical framework for studying targeted environmental regula-

tions in the Amazon. This is based on the changes-in-changes (CIC) model proposed by A&I,

which provides a nonlinear generalization of the difference-in-differences (DID) model to the entire

distribution of outcomes.

Our empirical approach is shaped by certain data constraints. We focus on municipal-level

deforestation and treat that as a function of the regulatory environment (among other factors –

e.g., commodity prices and local climatic conditions), given we do not observe the land use decisions

of individual farmers but instead have land-use panel data at the municipal level. On the policing

front, we have only limited information about the intensity of monitoring, so we use a binary

measure of treatment – assignment to the Priority List – and follow a treatment effects approach,

noting that modeling the micro-level decisions of farmers and regulators is not feasible. The data

constraints notwithstanding, our approach enables us to recover causal treatment effects based on

aggregate data and credible policy variation.

5.1 The Changes-in-Changes Model

We make use of standard potential outcomes notation, with capital letters denoting random vari-

ables and lower-case letters denoting corresponding realized values. Each municipality m belongs

to group Gm ∈ {0, 1}, where group 0 is the control group and group 1 is the treatment group –

extensions to more than two groups are straightforward. Let Amt denote the total forested area in

municipality m at the beginning of year t, and let Dmt be the amount of deforestation occurring

in m during that year. The share of newly deforested area Ymt is the ratio of Dmt to Amt. We use

superscript j ∈ {0, 1} to indicate the potential outcome that arises under the policy regime j. The

observed share of deforestation for municipality m at time t can then be written:

Ymt = (1−Gm)× Y 0
mt +Gm × Y 1

mt .

The potential share of deforestation is given by the specification:

Y j
mt = hj (Xmt, Umt, t) ,
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for j ∈ {0, 1}. Xmt is a municipality-level vector of observed factors, including prices and agro-

climatic conditions (see Section 4). Umt is a municipality-level unobservable term that can in-

corporate municipality fixed effects (reflecting permanent differences across m in terms of, say,

unmeasured soil quality, climatic conditions, or topography) in addition to time-varying unobserv-

ables; for instance, we allow for, but are not restricted to, a decomposition of the form Umt =

αm + ηmt. The function hj depends on t, which allows for flexible time trends. In terms of the im-

pact of the policy, one might expect h1 (x, u, t) ≤ h0 (x, u, t) for any (x, u, t), given that the Priority

List increases monitoring and enforcement intensity. Because we do not restrict the way in which

the functions hj are affected by treatment status j, municipalities at different stages of the defor-

estation process may respond differently to the policy intervention, giving rise to heterogeneous

treatment effects.

We impose four assumptions on the model. Following A&I, we make

Assumption 1 Monotonicity: The functions hj (x, u, t), for j∈{0, 1}, are strictly increasing in u.

Imposing strict monotonicity of hj on the unobservable u restricts all unobservable factors influ-

encing deforestation shares to be captured by a single scalar; while it involves a loss of generality,

the same restriction applies to the standard DID model, and is common in empirical work more

generally.26 In our context, it implies that a location more suitable for agricultural activities (and

so more prone to deforestation) is associated with a higher value of u (i.e., has a higher rank).

Noting the assumption does limit treatment effect heterogeneity to some degree – multiple

random coefficients are ruled out, for example – we are still able to capture the following relevant

features of our setting by combining the monotonicity assumption with a flexible function hj . First,

the impact of the blacklist policy can vary depending on the rank of the municipality, given the

model does not restrict the way the policy indicator j and the unobservable u interact. Thus,

conditional on observables, locations more prone to deforestation (i.e., those at higher ranks) may

require more intense monitoring in order to reduce the amount of deforestation there, while better

preserved locations (i.e., those at lower ranks) may be more sensitive to a given level of monitoring

and enforcement. Second, the model allows for interactions between the time indicator t and the

unobservables. Such interactions are reasonable in our setting because unobservable conversion

costs may increase and/or land quality may decrease over time as deforestation in a municipality

progresses – if, for example, farmers opt first to deforest in locations with lower conversion costs

or higher land quality (as is plausible). Third, because hj can change flexibly over time, the

intervention may have dynamic impacts. For example, it might take time for potential deforesters

to update their beliefs about the probability of being caught and fined.27

26The distinction between weak and strict monotonicity is innocuous in the CIC model when the dependent
variable is continuous, as is the case here. (See the discussion in A&I’s footnote 14 on page 439.)

27We note that Assumption 1 imposes a ‘rank invariance’ condition (discussed more fully in Section D of the
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Assumption 2 Time Invariance Within Groups: Conditional on each group G and on observables

X, the unobservable U has an identical distribution over time.

This assumption requires any unobservable differences between Priority and non-Priority munici-

palities to be stable over time. This is a key condition for the CIC model, playing a role similar

to the parallel trends assumption in the standard DID model: in order to construct counterfactual

predictions based on the observable distributions, some form of stability over time is necessary.

A test analogous to the DID pre-treatment parallel trends test is available in the case of CIC – a

placebo test of whether the actual distribution of deforestation shares equals the counterfactual dis-

tribution if treatment were assigned falsely in a different year; we present results from this placebo

test in the following section.

While restrictive, Assumption 2 is less demanding than it might appear, for three reasons.

First, the realizations of Umt may vary over time, and can be serially correlated – due, for instance,

to the presence of fixed effects – although they must be drawn from the same distribution.28

Second, the distribution of unobservables does not have to be the same across treatment and control

groups: rather, treatment effects can be heterogeneous across municipalities and across groups G.

The assumption thus allows for policy interventions targeted at a group with potentially higher

average benefits.29 Third, Assumption 2 (in combination with Assumption 1) is less restrictive

than the parallel trends assumption underlying the standard DID estimator: while the CIC model

allows group and time effects to differ across individuals with different (observed and unobserved)

characteristics, the standard DID model implicitly imposes constant group and time effects. (A

comparison of the CIC and the DID models is provided in Section D of the Supplemental Material.)

Of note, Assumption 2 allows the distribution of Xmt to vary by group and over time. The groups

do not need to be balanced in terms of their observable characteristics, nor do we need to reweight

and balance them, in order to estimate treatment effects.

Identification. In discussing identification, we adapt key results from A&I to our setting. Let

F
Y j
gt

denote the conditional distribution function of the potential share of deforestation Y j
mt given

G = g and X = x; we omit the conditioning variables X to simplify the notation. Let the inverse

distribution be given by F−1
Y j
gt

(q) for any quantile q ∈ [0, 1]. (When it is clear from the context, we

Supplemental Material). Rank invariance preserves the intuitive notion that, conditional on observables, a relatively
highly deforested location in the data remains a relatively highly deforested location under alternative counterfactual
policies – specifically, it preserves the rank u. While all the CIC results extend to a more appealing ‘rank similarity’
condition by incorporating two types of unobservables, one for each policy regime (allowing a relatively highly
deforested municipality to be more likely but not guaranteed to remain a relatively highly deforested municipality
under alternative policies), we maintain Assumption 1 (and our single-unobservable notation) for ease of exposition.

28This implies a rank similarity condition over time, as we discuss in Section D of the Supplement.
29Consistent with there being systematic unobservable across-group differences, higher unobservables lead to both

higher levels of new deforestation and a higher probability of being placed on the Priority List through past defor-
estation.
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also use the shorthand Y j
gmt to denote the potential outcome variable for a municipality m in group

g.) The following notation will be useful: the support of Ymt is denoted by Yt, the support of Ymt

conditional on G = g, by Ygt, and the support of Y j
mt given G = g, by Yjgt.

For expositional ease, consider two consecutive periods t and t+ 1, before and after treatment.

Athey and Imbens (2006, Theorem 3.1 and Corollary 3.1) show that under Assumptions 1 and 2,

the counterfactual distribution of Y 0
1mt+1 (i.e., the distribution of the treated group g = 1 in the

absence of the policy intervention, j = 0, at t + 1) is identified on Y0t+1 (i.e., the support of the

control group at t+ 1) and is given by

FY 0
1t+1

(y) = FY1t

(
F−1Y0t

(
FY0t+1(y)

))
, (2)

where y ∈ Y0t+1. In words, the counterfactual distribution FY 0
1t+1

can be calculated based on the

distribution of three observables: the distribution of deforestation shares for the same group but

prior to treatment (FY1t), and the distributions of the share of deforestation for the control group

both before and after treatment (FY0t and FY0t+1). Note that the distribution of Y for the treated

group under the treatment at t + 1 (i.e., after treatment) is trivially identified: FY 1
1t+1

= FY1t+1 .

By comparing the observed FY1t+1 with the counterfactual FY 0
1t+1

, we can obtain various treatment

effects on the treated (average effects and quantile effects, for example).30

When the dataset covers one time period before treatment, the model is just-identified. With

more than one pre-treatment time period, there is more than one way to identify FY 0
1t+1

, and so

the model becomes overidentified. Of note, FY 0
1t+1

is identified only on Y0t+1; outside this support,

FY 0
1t+1

is not identified. A similar expression to (2) holds for the untreated group under the same

assumptions (Athey and Imbens, 2006, Theorem 3.2):

FY 1
0t+1

(y) = FY0t

(
F−1Y1t

(
FY1t+1(y)

))
, (3)

where y ∈ Y1t+1. Thus equation (3) provides information about treatment effects on the untreated.

As before, the counterfactual distribution for the untreated FY 1
0t+1

is not identified outside the

support of the treated group, Y1mt+1.

Support Conditions and Partial Identification. As just mentioned, the counterfactual dis-

tribution of (say) the treated group, FY 0
1t+1

, is identified only on the support of the control group

Y0t+1, and it is not identified outside this support. Consequently, when the support Y0t+1 is not

comprehensive enough, i.e., when Y0t+1 ⊂ Y0
1t+1, then FY 0

1t+1
is identified on the subset Y0t+1, but

it is not identified at the tails of Y0
1t+1 (assuming all portions of the support are connected). In

30See Figure 1, page 442, in A&I for a clear exposition. We provide intuition for (2) in the context of our study
in the Supplemental Material, Section D.
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this case, we cannot point-identify the average treatment effect on the treated; a similar problem

can arise for the untreated group.

Still, it is possible to bound counterfactual distributions (and average treatment effects) in a

spirit similar to Manski (2003). By putting all remaining probability mass outside Y0t+1 at the left

and right end points of Y0
1t+1, we obtain the lower and upper bounds for FY 0

1t+1
, denoted by FL

Y 0
1t+1

and FU
Y 0
1t+1

, respectively. (Once again, the same holds for the untreated group.) To implement this

solution, we need prior information relating to the counterfactual support Y0
1t+1. Assumption 3

provides such prior information, as implemented previously in the empirical literature (see, e.g.,

Ginther, 2000; Lee, 2009).

Assumption 3 Support: Assume Yjgt = Ygt for j, g = 0, 1, and for any t.

Assumption 3 implies that while the policy intervention may affect the distribution of deforestation

shares, it does not affect the support of the distribution. Note that, because deforestation shares

always lie between zero and one, we could take Yjgt = [0, 1] for all j, g, and t, making the assumption

innocuous. In practice, the amount of deforestation in a given municipality in a given year is

typically small because of high conversion costs, implying that observed deforestation shares are

mostly closer to zero than to one in the data. (The maximum deforestation share in a municipality-

year in the data is 0.19.) Constructing bounds based on the Yjgt = [0, 1] support would then result in

unnecessarily wide bounds for treatment effects in practice. We therefore use the observed supports

in the data Ygt, making Assumption 3 relevant in practice.31

Under Assumption 3, we cannot point-identify the counterfactual distributions of both treated

and untreated groups simultaneously when Y1t+1 6= Y0t+1. For instance, if Y1t+1 ⊂ Y0t+1, we can

point-identify the counterfactual distribution for the treated group FY 0
1t+1

(identified on the larger

set Y0t+1), but not the control group, FY 1
0t+1

(identified only on the smaller set Y1t+1). In this case,

we point-identify the average treatment on the treated (ATT), but we can only partially identify

the average treatment on the untreated (ATU).

Semiparametric Specification. Although the CIC model can be estimated completely non-

parametrically (Athey and Imbens, 2006; Melly and Santangelo, 2015), we adopt a semiparametric

specification because of data limitations. The simplest and most parsimonious procedure is to

partial-out the covariates Xmt and apply the CIC model to the residuals, as A&I suggest.

31This procedure leads to worst-case bounds because it does not incorporate possible additional restrictions, such
as continuity or smoothness on the counterfactual distributions. In order to minimize the impact of outliers, we follow
the literature and trim observations below the 3rd and above the 97th percentiles (Ginther, 2000; Lee, 2009). The
empirical results are robust to the trimming – for example, dropping observations below and above the percentiles
[2.5, 97.5] and [3.5, 96.5]. See Section G of the Supplemental Material. Note that if the policy intervention reduces
deforestation shares by also shifting the supports to the left – i.e., by reducing the maximum deforestation possible
– our bounds become more conservative (i.e., wider than the true bounds).
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To that end, we adopt the logit model, as is common in the empirical land use literature

(Stavins, 1999; Pfaff, 1999; Souza-Rodrigues, 2019). This model is appealing in our context. It can

be motivated in terms of there being a continuum of farmers who make binary choices (to deforest or

not), aggregated up to the municipality level; one can then trace the share of deforestation back to

underlying individual decisions – helpful in interpreting the empirical results. From a measurement

perspective, the model does not predict negative deforestation (in contrast to a linear model).

This is important in our setup because the estimated ex-post optimal list depends crucially on

having reasonable predictions for counterfactual deforestation, yet a linear model predicts negative

deforestation for over 16 percent of these observations, which may lead to biased ATT estimates and

produce misleading results when constructing the counterfactual optimal list. In addition, the logit

specification allows for heterogeneous effects of covariates Xmt on deforestation in a parsimonious

way. This is useful when selecting the ex-post list: if heterogeneous effects were restricted to

depend only on unobservables, the ex-post list would only select all municipalities in the group

with the highest average impact of treatment. Finally, the logit model has a convenient functional

form that makes it easy to partial-out the covariates in order to estimate the CIC model. A fully

nonparametric model would require estimating all conditional distribution functions, given X, in

equations (2) and (3) nonparametrically, which is not practical.32

Assumption 4 Semiparametric Model: The potential share of newly deforested area, Y j
mt, for

j ∈ {0, 1}, in a municipality m at t is given by

Y j
mt =

exp
[
X ′mtβ + V j

mt

]
1 + exp

[
X ′mtβ + V j

mt

] , (4)

where (i) V j
mt = vj (Umt, t), with the functions vj (u, t) satisfying Assumption 1 (i.e., strict

monotonicity on u); (ii) the unobservable Umt is independent of Xmt given Gm; and (iii) V j
mt

satisfy the support condition in Assumption 3.

Assumptions 4(i) and 4(iii) apply the CIC model to the residuals Vmt. Assumption 4(ii) is the

typical extension of the zero correlation assumption from linear to nonlinear models. (Note that

this is a semiparametric model because it leaves both the function vj (Umt, t) and the distribution

of Umt unspecified.) By regressing the log odds ratio of the share of deforestation on covariates, we

can identify and estimate the coefficients β; then we can back out the residuals Vmt, and apply the

CIC model to them.33

32An alternative solution, proposed by Kottelenberg and Lehrer (2017), is to reweight the observations based on
propensity scores. Although appealing, this solution is of limited use in the current context because of the lack of
common support on propensity scores induced by the selection rule (see Section 4).

33Specifically, as A&I note, let Imt be a vector of dummy variables indicating group status (control versus treat-
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5.2 Average Treatment Effects

We calculate the average treatment effects as follows: start with the logistic function ϕ (x, v) =

exp (x′β + v) / (1 + exp (x′β + v)). From (4), the potential share of new deforestation is given by

Y j
mt = ϕ(Xmt, V

j
mt). Expected deforestation under intervention j, Dj

mt, conditional on observables

(Xmt and Amt) and on the group G = g, is given by

E
[
Dj
mt|Xmt, Amt, Gm = g

]
=

∫
[ϕ (Xmt, v)×Amt] dFV j

gt
(v) , (5)

where the distribution F
V j
gt

is either observed (using the residuals of the log odds ratio regression) or

is obtained from the CIC model (i.e., from either (2) or (3) applied to the residuals Vmt). Given (5),

average treatment effects are defined in the standard way. When the counterfactual distribution of

the residuals is not point-identified, we bound the conditional expectation as∫
[ϕ (Xmt, v)×Amt] dFLV j

gt

(v)

≤ E
[
Dj
mt|Xmt, Amt, Gm = g

]
≤

∫
[ϕ (Xmt, v)×Amt] dFUV j

gt

(v) . (6)

Bounds on average treatment effects follow naturally from (6).

In turn, to measure the carbon emissions that result from the deforestation process, we use

the equality Ejmt = Dj
mt × CSm, where Ejmt are the potential carbon emissions under policy j,

and CSm is the average difference in carbon stock, comparing forested and deforested areas within

municipality m. (For simplicity, we ignore carbon decay and assume all carbon stock is immediately

released into the atmosphere once a plot of land is deforested.)

6 Empirical Results

In this section, we present the estimated average treatment effects, along with CIC specification

tests. The following covariates are included in the partialing-out regression: lagged rainfall and

rainfall squared, lagged temperature, the share of protected areas, lagged price of beef and price

of crops, lagged municipality GDP, state dummies, agricultural suitability (as measured by FAO-

GAEZ agricultural potentials for soy and for corn), distance to the nearest port, predetermined

cropland area (as of 2001), and predetermined number of cattle (as of 2001). The supplement

provides further details, including a discussion of possible mechanisms and the relationship between

ment) interacted with time dummies. In the first stage, we estimate the regression log
(

Ymt
1−Ymt

)
= X ′mtβ+I ′mtγ+νmt,

then construct the residuals with the group-time effects left in: log
(

Ymt
1−Ymt

)
−X ′mtβ̂ = I ′mtγ̂ + ν̂mt.
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our CIC estimates and those from a standard DID model.34

Treatment Effects. The estimates, first abstracting from spillovers, are reported in Table 2. In

the top panel, we present the estimated average effects on deforestation, as explained in Section 5.

The columns in the panel give the estimated ATT, ATU, and ATE, respectively, which are shown

separately (in the rows) for 2009 and 2010. The results here are based on the average of the baseline

years, 2006 and 2007: results for alternative baselines are shown in Section G of the supplement.

The bottom panel of the table reports the estimated total cumulative treatment effects in those two

years (summed over all municipalities), in terms of deforestation and carbon emissions. That panel

also reports the value of the total emissions avoided, assuming a social cost of carbon of $20/tCO2

(Greenstone et al., 2013; Nordhaus, 2014). The numbers in square brackets are lower and upper

bound estimates for the partially identified sets, and the numbers in parentheses are 95 percent

confidence intervals.35 We compute the confidence intervals for the parameters of interest (rather

than for the identified sets) based on the approach developed by Imbens and Manski (2004); for

the point-identified parameters, we use the standard procedure.36

Considering the treated group first, all the estimates are statistically significant. The estimated

ATT is approximately −24 km2 for 2009, and −58 km2 for 2010. Greater estimated impacts in the

later year are consistent with farmers updating their beliefs about the stringency of the new policy

regime. According to the estimates, the treated group would have deforested a total of 6,916 km2

in the period 2009-10 in the absence of treatment, which is 71 percent higher than the amount of

deforestation observed in the data, implying that the Priority List led to the preservation of 2,886

km2 of forested area. This translates into avoided emissions of 34.6 million tons of carbon in the

same period. In turn, the estimated social benefit of the program in terms of avoided emissions is

approximately $2.54 billion.

34In Section C of the supplement, we present the regression that partials out the covariates Xmt. We also include
the estimated factual and counterfactual distributions of the residuals F

V
j
gt

, and provide suggestive evidence regarding

possible mechanisms that link the Priority List to deforestation.
35Following A&I, the statistical uncertainty is modelled here using a repeated sampling framework over the distri-

bution of the unobservables Umt. This can be thought of as conventional ‘super-population-based’ (or sampling-based)
inference, in contrast with recent work by Abadie et al. (2020) and others considering finite-population design-based
uncertainty, where all population units are observed in the data and all the randomness comes only from the treat-
ment assignment. Although we observe all municipalities in the Brazilian Amazon, the selection procedure placing
municipalities onto the blacklist means completely random treatment assignments are not credible here. Thus we
adopt the usual super-population-based statistical inference, viewing the associated uncertainty as an approximation
(perhaps conservative in nature) to finite-population-based statistical uncertainty.

36In practice, our confidence intervals are computed based on the standard i.i.d. nonparametric bootstrap, where
the i.i.d. resampling occurs in the cross-sectional dimension. Given that the ATU and ATE are both partially
identified (as we discuss below), we used 500 bootstrap replications to compute standard errors for the lower- and
upper-bound estimators, and plug them into the confidence interval formula (see Imbens and Manski (2004) equations
(6) and (7) on page 1850). For the point-identified ATT, we followed a similar procedure using the same bootstrap
replications to compute the standard error for the estimator, then plugging it into the standard confidence interval
formula, warranted given that A&I have shown that the ATT estimator is asymptotically normally distributed.
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Treatment effects on the untreated are not point-identified, but the identified sets are highly

informative, the effects being statistically significant. The estimated effects in 2009 range from −3.7

km2 to −4 km2, and increase to between −6 km2 and −6.8 km2 in 2010. The difference between

the estimated ATT and ATU provides evidence of heterogeneous treatment effects, suggesting that

the government did select municipalities with potentially higher average impacts. We note that

such results could not be obtained using a DID strategy, given that it only identifies effects on

the treated. Further, extrapolating results from the treated group to the untreated under the

assumption of homogeneous effects would (in light of these heterogeneous estimates) bias up the

estimated effects on the untreated.

Table 3 presents the estimated treatment effects, now incorporating potential spillovers. We

find that the ATTs are greater than when potential spillover effects are ignored. This is attributable

to the fact that lower average reductions in deforestation after treatment now arise in the control

group, given that it does not include those municipalities more likely to respond to the policy

intervention. The estimates indicate that the Priority List avoided the clearing of 3,050 km2 of

forested area and emissions of 36.5 million tons of carbon during 2009-10. The estimated ATUs are

in line with the estimates obtained when we assumed away any spillovers effects.

We denote by ‘ATS’ the average treatment effect of including a spillover municipality on the

Priority List. The estimated ATSs are statistically significant. While they are only partially

identified, the estimated sets are again highly informative: the effects are approximately −11.5

km2 for 2009, and increase to between −16 km2 and −20 km2 for 2010. Similar to the other

groups, impacts are greater during the second year of the program. The magnitudes of the ATSs

fall between the estimated ATT and ATU, providing further evidence of heterogeneous effects.

In terms of total effects, the direct impact of the program avoided 3,050 km2 of deforestation in

Priority municipalities in 2009-10 (as noted), and the indirect impact in the same period discouraged

the clearing of 1,102 km2 of forested area in spillover municipalities – approximately 26% of the

total impact.37 Thus, farmers in untreated municipalities both geographically close to a Priority

municipality and that experienced large areas of rainforest being cleared in the past reacted to

the policy by reducing deforestation. They might have believed that monitoring could increase

there, because of the higher risk of being placed on the list in the near future. Leakage or general

equilibrium effects would tend to work in the opposite direction, but they are likely to be small.

Any leakage would be limited in the short run by the costs of shifting deforestation to other areas.

Equilibrium price effects are also likely to be small because the prices of the main products in the

Amazon (meat, soybeans, and corn) are determined on international markets, important inputs like

37Note that the ATS differs conceptually from an estimate of the reaction of farmers in spillover municipalities to
the existence of the policy intervention itself. The latter is given by the indirect effects shown at the bottom of Table
3. Of note, Andrade and Chagas (2016) obtained qualitatively similar results for the (indirect) spillover effects.
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fertilizers are mostly imported, and the vast majority of Brazilian beef, soy, and corn production

takes place in biomes other than the Amazon. In addition, migration costs would likely limit

short-run equilibrium impacts in local labor markets.38

We estimate a total of 4,152 km2 of forested area preserved by the policy. In turn, the program

avoided 49 million tons of carbon emissions, with a social benefit of approximately $3.63 billion:

these are our preferred summary estimates of the policy impacts. Compared to the combined

budget allocated to INPE’s and IBAMA’s monitoring and enforcement activities for 2009 and

2010, a total of around $117 million, the estimates indicate a benefit-cost ratio of approximately 31

for the program, which is unusually high. Based on that ratio, further investments in monitoring

and enforcement would be highly worthwhile.39

The estimates just presented call to mind the issue of possible mechanisms causing the reduc-

tions in deforestation. In Section C of the Supplemental Material, we present evidence relating to

these. There, we focus on observables, investigating the effects of treatment status on a proxy for

monitoring (the number of alerts given out by INPE), a proxy for enforcement intensity (the evolu-

tion of the number of fines issued by IBAMA), the total volume of rural credit concessions, and the

share of protected areas. As we show, the suggestive evidence points to an increase in enforcement

intensity in Priority municipalities, with policing in untreated units remaining relatively stable.

This is consistent with an improvement in state capacity to implement environmental regulations,

rather than a simple reallocation of fixed resources following the Priority List’s introduction.

Testing. We now discuss the results of three tests applied to the CIC model. Taking these in

turn, we first assess whether the actual distribution of deforestation shares equals the counterfactual

distribution when imposing the policy intervention (falsely) one year early, in 2007 – this serves as a

placebo test, the CIC analog to the DID pre-treatment parallel trend test. Second, we test whether

the Priority List affects the entire distribution of outcomes, similar to the placebo test but using

the correct timing of the intervention. Third, we test whether the counterfactual distribution is

everywhere below the actual distribution, as would be the case if the absence of treatment resulted

in more deforestation everywhere – a stochastic dominance test.

Table 4 presents the results of these tests. We apply each test to both the log odds ratio of

38Indirect equilibrium price effects could lead to more deforestation in control (non-spillover untreated) munici-
palities as well, tending to bias the magnitudes of our estimated treatment effects upward. Our sense is that any bias
would be small for the same reasons listed in the main text.

39The sum of 2009 and 2010 budgets for INPE’s Amazon satellite monitoring program is approximately $3.95
million. IBAMA’s two monitoring and enforcement programs related to deforestation are the “Prevention and Combat
of Deforestation, Fires and Forest Fires,” and the “Environmental Policy Management” programs. In 2009-10, their
combined budget was around $113 million, approximately 10% of IBAMA’s total budget. This combined budget
provides an overestimate of IBAMA’s monitoring costs related to the Priority List, as it includes expenditures on
other monitoring activities and in areas other than the Amazon biome. Source: https://www.siop.gov.br/modulo/

login/index.html#/.
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deforestation shares not conditioning on covariates and to the residuals (Vmt) after partialling-

out the covariates, as explained in Section 5. In all cases, the p-values correspond to both the

Kolmogorov-Smirnov and the Cramer-von Mises statistics. For the two outcomes and associated

test statistics, we fail to reject the null of ‘no impact’ when the policy intervention is wrongly

imposed in 2007 – i.e., the placebo test passes. In contrast, we reject the null of no impact when

the policy intervention is set correctly in 2008, and we find strong evidence in favor of stochastic

dominance, as one might expect given the estimated treatment effects discussed above.

7 Optimal Policy Targeting

In this section, we develop a counterfactual framework for targeting regulations optimally based on

the estimated treatment effects in the previous section. Then we present and discuss the results

from various counterfactual targeting exercises.

7.1 Policy Targeting Framework

Suppose a policy maker wishes to assign municipalities to the Priority List in order to minimize

total deforestation (or total emissions), and that she has information about the conditional average

treatment effects estimated above, along with the covariates we have used. For expositional ease,

denote the expected deforestation under intervention j by Djmt ≡ E[Dj
mt|Xmt, Amt, Gm], for j ∈

{0, 1}. Also, denote the counterfactual assignment rule in period t by φt = (φ1t, ...φMt), which

maps municipalities m = 1, ...,M to the Priority List treatment; this can be either deterministic

φmt ∈ {0, 1} or probabilistic φmt ∈ [0, 1]. For a given time period (and ignoring spillovers for now),

the policy maker solves the problem

min
φt∈[0,1]M

M∑
m=1

[
φmtD1

mt + (1− φmt) D0
mt

]
. (7)

The minimum deforestation is achieved (trivially) by a singleton rule that allocates m to the

treatment when D1
mt ≤ D0

mt. When the equality holds, any random allocation is optimal.

The minimization problem in (7) abstracts from two important considerations. The first involves

resource constraints. The original Priority List sought to direct limited resources where they were

expected to have the greatest impact. Given that information about the actual resources allocated

to policing is difficult to obtain, we incorporate limited monitoring resource constraints into the

policy maker’s minimization problem in two alternative ways. One constraint limits the total area

S that can be monitored under the Priority List (given the plausible notion that the costs of

monitoring and punishing illegal deforestation increase with the total area covered by the policy).

24



We write this as:
M∑
m=1

sm × φmt ≤ S, (8)

where sm is the area of municipality m. The alternative constraint applies to the total number of

municipalities M that can be placed on the list:

M∑
m=1

φmt ≤M. (9)

This constraint is reasonable when monitoring costs are primarily a function of the number of

districts that inspectors must visit.40 Once the constraints are taken into account, the estimated

magnitudes of the treatment effects for all municipalities influence the assignment of each munici-

pality m to the list.

The second consideration relates to partial identification: when the support conditions are

violated, we can only partially identify counterfactual expected deforestation. This means that

an ex-post policy evaluation must be analyzed as a treatment choice problem under ambiguity

(Manski, 2005). Here we consider the minimax criterion, assuming the policy maker chooses the

blacklist in order to minimize total deforestation in the worst-case scenario.

Formally, define the vector Dmt = (D0
mt,D1

mt). The set of admissible values for Dmt is

Dmt = D0
mt × D1

mt, with Djmt = [Djmt,D
j
mt] for j ∈ {0, 1}, where Djmt and Djmt are the lower and

upper bounds given by the terms on the left-hand side and the right-hand side of inequality (6),

respectively. Next, define the tuple Dt ≡ (D1t, ...,DMt), and the product set Dt ≡
∏
m=1,...,M Dmt.

The policy maker’s problem under the minimax criterion is

min
φt∈[0,1]M

max
Dt∈Dt

M∑
m=1

[
φmtD1

mt + (1− φmt) D0
mt

]
, (10)

subject either to the ‘total area’ constraint (8), or to the ‘total number of municipalities’ constraint

(9). The minimization problem (10) subject to either constraint simplifies to a linear programming

problem that is straightforward to solve numerically (see Section F of the supplement). In the

40Ideally, we would have precise information about the expected monitoring costs for each municipality m in each
time period t, both without and with the treatment. Then we could replace the constraints (8) and (9) with the
restriction

M∑
m=1

[
φmtE

[
MC1

mt|Xmt, Gm

]
+ (1− φmt)E

[
MC0

mt|Xmt, Gm

]]
≤ Kt,

where MCj
mt are the expected monitoring costs, and Kt is the government’s budget constraint. (We note that our

framework can accommodate other objective functions, for example augmenting monitoring costs with the social costs
of deforesting land.) Such an approach is not feasible here, however. While we know IBAMA’s and INPE’s total
budgets, in practice we do not have information about the true budget constraint for the Priority List Kt; nor do we
know how much of the total is allocated to monitoring nor how monitoring costs are distributed across municipalities.
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empirical exercise, when using constraint (8), we set S equal to the total area occupied by the

municipalities that were effectively put on the list in 2008 (i.e., the treated group). Similarly,

when using constraint (9), we set M = 35, which is the number of municipalities in the treated

group. Doing so allows us to assess how close the observed Priority List was to the ex-post optimal

assignment. We also investigate how the results change as we relax the constraints.

In the presence of spillover effects, the objective function is non-linear and non-differentiable

in φ, so that we cannot solve the minimax problem using standard methods. Instead, to find

the global minimum, we use a stochastic search algorithm – more precisely, a genetic algorithm

that allows for integer optimization in high-dimensional constrained minimization problems. (See

Section F of the supplement for a detailed description of the computation of the ex-post optimal

list in this case.) Of note, we do not select a list that changes over time as this complicates the

problem substantially, given the combinatorics involved. We therefore include the total of expected

deforestation during 2009 and 2010 for each municipality in the objective function (10).41

7.2 Policy Targeting Results

We now present results absent potential spillovers, then show how targeted policies are affected

once spillover effects are taken into account.

‘No Spillovers’ Case. The top panel of Table 5 compares the original Priority List with the

ex-post optimal list obtained by solving the relevant constrained minimizations, absent spillovers:

the left panel considers the total area S that can be monitored as the constraint (see equation (8)),

while the right panel fixes the number of municipalities M (equation (9)).

Overall, the proportion of municipalities that appear on both lists is high: 83 percent when the

constraint involves the total area, and 93.5 percent when the constraint is a maximum number of

municipalities. When the policy maker is constrained to ‘police’ a pre-specified overall area, she can

reduce deforestation in the worst-case scenario by replacing ten large municipalities on the Priority

List with 73 municipalities that are smaller in size but that would help reduce total deforestation.

In contrast, when the restriction applies to the number of municipalities, the policy maker would

do better – as expected – by replacing small municipalities (comprising almost half of the Priority

List) by municipalities that are larger in size (the total area covered by this list being 42 percent

larger than the original).

Figure 4 presents the geographic distribution of municipalities on the various lists. Recall that

the top left panel presents the actual Priority List and the top right panel shows the Priority

41The amount of expected deforestation for each m in (10) is the sum of the expected deforestation in 2009
(calculated based on equation (5)), and the expected deforestation in the following year, taking into account the
counterfactual remaining forested area from the previous year, as explained in the supplement’s Section E – see
equation (E3).
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List together with protected areas (composed of conservation units and indigenous reserves). The

bottom left panel then shows the optimal list when the constraint is the total area covered, and

the bottom right panel, the counterfactual list when the constraint is the number of municipalities:

the bottom two panels also display protected areas, for reference.

Two interesting patterns emerge – features that were not imposed during the course of the

estimation strategy. First, the overlap between the protected areas and the area-constrained coun-

terfactual list is much smaller than the overlap between the protected areas and the original Priority

List; indeed, the former comprises an area approximately half the latter. This suggests that these

two policies could be combined together in an even more productive way than in the actual im-

plementation by the Brazilian government. Second, more specifically, the geographic distribution

of the area-constrained counterfactual list traces out a protective shield close to the deforestation

frontier; that frontier, the “Arc of Deforestation,” is located along the southeastern edge of the

Amazon Biome. In the current context, the Priority List may therefore serve to work alongside the

protected areas in preventing the deforestation process from continuing into more pristine regions.

To shed some light on which observable factors might be more important in determining whether

a municipality is placed on the optimal list or not, we estimate simple reduced-form regressions,

regressing the optimal list indicator on the covariates X, the ‘criteria’ variables Z, and the Priority

status indicator G. Based on that exercise, the two most important factors predicting the optimal

list status are the share of protected areas (consistent with our analysis of the geographic distribu-

tion of the optimal list – see Figure 4), and Priority status itself, which is unsurprising, given the

overlap between the two lists presented in Table 5.42

Next, we seek to quantify the consequences of optimally targeted policies. We do so by com-

paring the maximum possible expected deforestation and the carbon emissions achieved under the

optimal list with the corresponding outcomes under the Priority List, along with another bench-

mark: a list composed of municipalities that are selected randomly.43 The top panel of Table 6

presents the results. Compared to the area-constrained optimal list, the Priority List results in

around 6 percent more deforestation and 5 percent higher carbon emissions in 2009–2010. The

estimated avoided emissions translate into an additional social value of the optimal list (i.e., in

excess of the value of the Priority List) of at least $622 million for that two-year span alone.

We find that the ex-post optimal list fixing the number of municipalities performs slightly

better than the area-constrained optimal list. But since it covers a much larger area, monitoring

costs are likely to be significantly higher in the former case. In comparison, randomly selecting

42As an aside, we note that these regressions are meant to be suggestive only: they ignore the fact that the
assignment of a municipality onto the optimal list depends on the characteristics of all municipalities in the presence
of capacity constraints. (Results are available upon request.) For an evaluation of the impacts of protected areas on
deforestation, see Pfaff et al. (2015).

43We simulated 1000 random lists with M = 35 and computed the average resulting counterfactual deforestation
and emissions.
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35 municipalities onto the list would result, on average, in 22 percent more deforestation and 26

percent higher emissions than the number-constrained optimal list.

To investigate further how the two main policies in the Brazilian Amazon – the Priority List

and protected areas (PAs) – interact with each other, we calculate the optimal blacklist when fix-

ing the share of PAs in every municipality to be the same. Focusing on the area-constrained lists,

we find that when setting the share of PAs in all municipalities to equal the sample average, the

carbon emissions of a restricted ‘fixed-PA’ optimal list are around 66% higher than the optimal

list, providing further evidence underlining the importance of coordinating both policies to reduce

deforestation. This is also substantially higher than the emissions under the Priority List, sug-

gesting that the policy makers did incorporate (to some extent, even if implicitly) the geographic

distribution of protected areas when implementing the Priority List. When we increase the share of

PAs in all municipalities to the sample average plus one sample standard deviation, the emissions

of the ‘fixed-PA’ optimal list are just 14% greater than the optimal list – a reasonable result given

that a much larger area would have been protected, leaving therefore less room for the optimal list

to reduce emissions further.

Next, we are interested to see how much the minimax solution for carbon emissions is affected

by relaxing the constraints we have been imposing. Figure 5 presents the level of emissions at the

optimum for the total area constraint. The vertical line shows the maximum S that corresponds to

the area covered by on the Priority List. The horizontal line corresponds to the amount of carbon

emissions estimated directly from the data for 2009-10.

As the figure makes clear, the minimax carbon emissions decrease rapidly when a small area

is covered by the optimal list and level off for large S eventually, indicating that the benefits of

including additional municipalities on the list decrease with S. Because monitoring costs are likely

to increase with S, concentrating efforts on a strategically-selected subregion of the Amazon emerges

as a suitable policy. Furthermore, the minimum area needed for the optimal list to generate the

same amount of emissions as the original Priority List is approximately 550 thousand km2, which

is 72 percent of the area covered by the original list (763 thousand km2); this corresponds to the

point in the figure where the minimax carbon emissions curve crosses the horizontal line. This

finding draws attention to the substantial monitoring cost savings that are available, holding the

level of observed emissions fixed.44

‘Spillover’ Case. Next we discuss the ex-post optimal lists when spillovers are incorporated into

both the estimation procedure and the minimization problem. Here we draw attention to how the

results differ in the ‘spillover’ case.

44The same type of reasoning applies when we change the number of municipalities allowed on the optimal list,
M , with the minimum number of municipalities generating the same amount of observed emissions as the Priority
List being 21, or around 60 percent of the original list.
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First, the bottom panel of Table 5 compares the Priority List with the ex-post optimal lists

based on the two different constraints we consider, but now allowing for spillovers. Under the

total area constraint, the optimal list replaces a greater number of large municipalities with small

municipalities, as compared to the optimal list with no spillovers. This leads to a smaller overlap

in the municipalities that appear in both the optimal list and original Priority List – now 72

percent. Intuitively, such an assignment takes advantage of the fact that a larger number of small

municipalities treated can have wider impacts because of spillover effects.

Figure 6 presents the geographic distribution of the resulting optimal lists. When compared

to the no-spillover case in Figure 4, the area-constrained optimal list is now more geographically

dispersed, with fewer municipalities being contiguous. Such a pattern is also attributable to the

operation of spillover effects: placing all targeted municipalities together does not exploit the

potential reduction in deforestation in adjacent locations that arises when spillovers are operating.

(A similar pattern is observed for the number-constrained optimal list.)

The bottom panel of Table 6 then compares the levels of deforestation and emissions associated

with the alternative lists. Because the optimal lists now take advantage of potential spillovers, they

can achieve lower levels of forest loss in the worst-case scenario. The Priority List now results in

around 13 percent more deforestation and 12 percent higher carbon emissions in 2009-10 than the

area-constrained optimal list. This places a lower bound on the additional social value of the optimal

list of approximately $1.29 billion (approximately 36% of the social value of the original blacklist),

leading to a total value of at least $4.92 billion. From a suggestive benefit-cost perspective, if we

assume that the same combined budgets for INPE and IBAMA observed in 2009-10 were allocated

to implement the counterfactual list, the corresponding benefit-cost ratio for the optimal list would

be at least 42 – a substantial increase when compared to the ratio under the Priority List. (Results

are similar when we consider the optimal list constrained by the number of municipalities that can

be included.) In turn, randomly selected municipalities now result in 30 percent more emissions

than the number-constrained optimal list.

More generally, by relaxing the constraints of the minimization problem, we find that the

minimum area the optimal list would need to cover in order to generate the same amount of carbon

emissions as the Priority List is approximately 250 thousand km2, only around 33 percent of the

area covered by the original list. This points to even greater monitoring cost savings that become

available once spillovers are taken into account. (Similarly, the minimum number of municipalities

generating the same amount of observed emissions as the Priority List is 19 – just over half the

original blacklist.)

It is worth rehearsing several reasons why we find a mismatch between the Priority List and our

optimal lists. First, the authorities used a simple threshold rule to select municipalities, while we

minimized total deforestation explicitly. The explicit solution does not necessarily result in a simple
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threshold rule – that is, we made better use of the information about the geographic distribution of

the protected areas than the government’s threshold rule could. Second, the selection rule may have

considered (even if implicitly) effective monitoring costs, while the lack of information about these

constraints led us to proxy for these costs in the form of restricting the total area covered or the

number of municipalities included on the list. Third, regulators did not seem to have incorporated

potential benefits from spillovers in the design of the policy, while our optimal blacklist takes

explicit account of spillover effects. Fourth, we made use of ex-post treatment effect estimates that

were not available to the government at the time of their decision. Fifth, partial identification of

treatment effects, combined with the minimax decision rule, results in a list that minimizes the

(expected) maximum deforestation (i.e., that minimizes the worst-case scenario), which is different

from a list that minimizes expected deforestation (possible under point-identification of treatment

effects). Thus, even if the government tried to minimize expected deforestation, that list would not

necessarily coincide with our minimax list.

8 Conclusion

In this paper, we have developed a new approach for assessing the efficacy of targeted, blacklist-type

policies for slowing deforestation, a primary contributor to global carbon emissions and a source of

considerable concern worldwide. Focusing on the Priority List introduced by the federal government

in the Brazilian Amazon in 2008, we first showed that the policy had a substantial causal impact,

utilizing the flexible changes-in-changes approach of Athey and Imbens (2006): deforestation was

cut by 43 percent in municipalities placed on the list (relative to the case in which no policy

was introduced), and also generated non-trivial spillover effects in the form of lower deforestation

elsewhere.

We then used the treatment effect estimates in a counterfactual policy framework that allowed

us to compute an ex-post optimal list, reflecting realistic resource constraints faced by the regulatory

agency in its ability to monitor behavior and enforce environmental protections. The framework

also accommodated the possibility that the treatment effect estimates that serve as inputs to the

policy calculations may be only partially identified.

Comparing ex-post optimal lists with the actual Priority List, we showed that optimal targeting

can generate significant additional gains. Carbon emissions would be at least 10 percent lower than

under the Priority List, resulting in savings of at least $1.29 billion (more than a third of the total

value of the Priority List). The estimated benefit-cost ratio under the optimal list is over a third

higher than under the Priority List, itself already very high.

From a regulation perspective, our approach provides a means to quantify the gains to the

environment from optimally targeted policies aimed at countering tropical deforestation, based
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on credible econometric estimates. More generally, our counterfactual approach using ex-post

treatment effects is applicable in a variety of other settings where targeted regulations have been

introduced. In such contexts, the approach can help policy makers assess which policy configura-

tions (accounting for resource and information constraints) are likely to have most environmental

impact.

References

Abadie, A., S. Athey, G. W. Imbens, and J. M. Wooldridge (2020). Sampling-based versus design-based

uncertainty in regression analysis. Econometrica 88 (1), 265–296.
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(a) Incremental Deforestation, 2006 (b) Incremental Deforestation, 2010

Figure 2: Map of Deforestation in 2006 and 2010 (with Priority Municipalities overlaid)
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(a) Priority List (b) Priority List and Protected Areas

(c) Optimal List based on Total Area (d) Optimal List based on Number of Municipalities

Figure 4: Location of Priority List, Protected Areas, and Ex-post Optimal Lists without Spillovers
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Figure 5: Ex-Post Minimax Carbon Emissions, Varying the ‘Total Area’ Constraint

(a) Spillover Optimal List based on Total Area
(b) Spillover Optimal List based on Number of Munici-
palities

Figure 6: Location of Ex-post Optimal Lists with Spillover Effects
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Table 1: Summary Statistics for 2007 Cross-Section by Group

Total Sample
(N = 490)

Treated Group
(N = 35)

Untreated Group
(N = 455)

Spillover Group
(N = 34)

Control Group
(N = 421)

Mean SD Mean SD Mean SD Mean SD Mean SD

Land Use (km2)
Deforested Area 21 60 148 169 12 20 48 34 8.60 15
Cumulative Deforested Area 1,270 1,436 4,413 2,437 1,028 978 2,513 933 907 879
Forested Area 6,499 15,507 15,990 27,549 5,769 13,953 5,909 10,037 5,757 14,231
Municipal Area 8,726 16,716 21,815 29,409 7,719 14,899 10,053 10,910 7,530 15,170
Deforested Share (%) 1.21 1.91 1.72 1.41 1.17 1.94 1.96 2.09 1.11 1.92

Policy Measures
Number of Alerts 57 213 509 616 22 60 129 133 13 39
Fines Issued 9 19 40 44 7 14 26 27 5 10
Share of Protected Area (%) 28 33 22 22 28 34 18 21 29 34

Agriculture and Ranching
GDP (million Reais) 179 1,013 180 399 179 1,046 186 328 178 1,083
Agricultural GDP (million Reais) 19 24 39 22 18 24 38 39 16 21
Cattle (thousands) 105 148 363 290 85 108 233 118 73 98
Crop Area 109 455 289 563 95 443 256 386 82 445
Total Rural Credit (million Reais) 7 13 19 16 6 12 15 15 5 12

Other Variables
Rainfall (mm) 2,206 613 1,948 195 2,227 633 2,031 287 2,242 650
Temperature (◦C) 26 1 26 1 26 1 26 1.55 26 1
FAO-GAEZ Soy 33.7 4.32 35.7 2.07 33.5 4.41 35.7 2.40 33.4 4.49
FAO-GAEZ Corn 54.7 8.65 52.6 1.22 54.9 8.95 53.8 3.66 55 9.25
Distance to Port (km) 909 723 1,174 462 888 735 1,255 563 859 741
Carbon Stock in Forested Areas (tC/ha) 189 68 212 35 187 69 204 45 186 71
Carbon Stock in Deforested Areas (tC/ha) 117 48 101 23 118 49 99 26 119 50

Notes: This table reports municipality-level means and standard deviations (SD) for the variables used in the empirical analysis for the year 2007. An
observation is a municipality in the Brazilian Amazon. The Untreated Group combines the Spillover and Control Groups. The Spillover Group consists of
the untreated municipalities that (i) share a border with a treated municipality, and (ii) have the ‘selection criteria’ variables Z1

mt−1 and Z2
mt−1 above the

thresholds values: Z1
mt−1 ≥ 0.7× 2, 137 km2 and Z2

mt−1 ≥ 0.7× 222 km2. Land use data are from satellite images from PRODES (areas are measured in square
kilometres). Deforested Area measures incremental deforestation during the year; Cumulative Deforested Area adds past deforestation up to and including
2007; Forested Area measures the total area covered by forests at the beginning of the year; Deforested Share divides incremental deforestation in 2007 by
the forested area at the beginning of the year. The Number of Alerts comes from the DETER system. Fines Issued are obtained from IBAMA. Share of
Protected Area is the proportion of the municipal area that is under legal protection (either indigenous land or conservation units), based on data from the
National Register of Conservation Units. GDP consists of the municipalities’ total GDPs, from IBGE’s account system. Agricultural GDP includes crop and
livestock production, from IBGE’s Municipal Crop Survey and Municipal Livestock Survey. The variable Cattle measures the total number of cattle from
IBGE’s Municipal Livestock Survey. Crop Area measures the total area (in square kilometres) used to produce crops from IBGE’s Municipal Crop Survey.
Total Rural Credit measures the values of all contracted rural loans, aggregated up to the municipality-year level, based on data from the Brazilian Central
Bank. All monetary amounts are expressed in December 2011 Reais. Annual rainfall is measured in millimetres (mm), while annual temperature is measured
in degrees Celsius (◦C) — both data are from Matsuura and Willmott (2012). FAO-GAEZ Soy and FAO-GAEZ Corn consist of maximum attainable crop
yields at the field level, aggregated up to the municipality level. Distance to the nearest port is measured in kilometres using data from the Brazilian Ministry
of Transportation. Carbon stocks are measured in tons of carbon per hectare (tC/ha), based on data developed by Baccini et al. (2012).
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Table 2: Average and Cumulative Treatment Effects, without Spillovers

Average Treatment Effects: Deforestation (km2)

ATT ATU ATE

2009 -24.49 [-4.04, -3.67] [-5.50, -5.15]
(-27.64, -21.34) (-4.16, -3.58) (-5.65, -5.04)

2010 -57.97 [-6.84, -5.95] [-10.49, -9.66]
(-62.95, -52.99) (-6.97, -5.85) (-10.66, -9.52)

Cumulative Treatment Effects, 2009-2010

Deforestation Carbon Emissions Value
(km2) (millions tC) (billions U$)

Total Effects -2886 -34.60 2.54
(-3145, -2627) (-37.96, -31.24) (2.29, 2.78)

Notes: 95% confidence intervals are in parentheses. For ATT and the cumulative
effects, the confidence intervals are computed based on the standard i.i.d. nonpara-
metric bootstrap, where the i.i.d. resampling occurs in the cross-sectional dimension.
For ATU and ATE, they are based on Imbens and Manski (2004). We implemented
500 bootstrap replications. Deforestation is measured in square kilometres. Emis-
sions are measured in millions of tons of carbon. Values are measured in billion US$,
assuming a social cost of carbon of US$ 20/tCO2. The calculations use the fact that
1 tC = (44/12) tCO2.
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Table 3: Average and Cumulative Treatment Effects, with Spillovers

Average Treatment Effects: Deforestation (km2)

ATT ATU ATS ATE

2009 -28.39 [-3.99, -3.52] [-11.57, -11.53] [-6.26, -5.86]
(-31.73, -25.05) (-4.08, -3.45) (-13.57, -9.64) (-6.40, -5.73)

2010 -58.76 [-6.29, -5.75] [-20.02, -16.77] [-10.99, -10.30]
(-63.68, -53.84) (-6.40, -5.66) (-21.90, -14.68) (-11.16, -10.15)

Cumulative Treatment Effects, 2009-2010

Deforestation Carbon Emissions Value
(km2) (millions tC) (billions U$)

Direct Effects -3050 -36.49 2.68
(-3313, -2787) (-39.94, -33.04) (2.42, 2.93)

Indirect Effects -1102 -12.90 0.95
(-1232, -973) (-14.50, -11.30) (0.83, 1.06)

Notes: 95% confidence intervals are in parentheses. For ATT and the cumulative direct effects, the intervals
are computed based on the standard i.i.d. nonparametric bootstrap, where the i.i.d. resampling occurs in the
cross-sectional dimension. For ATU, ATS, ATE, and the cumulative indirect effects, they are based on Imbens
and Manski (2004). We implemented 500 bootstrap replications. Deforestation is measured in square kilometres.
Emissions are measured in millions of tons of carbon. Values are measured in billion US$, assuming a social cost
of carbon of US$ 20/tCO2. The calculation uses the fact that 1 tC = (44/12) tCO2.

Table 4: Tests based on the Changes-in-Changes Model

ATT2009 = −24.49, ATT2010 = −57.97

Placebo Test ‘No Effect’ Test
Stochastic

Dominance Test

KS CM KS CM KS CM

Unconditional 0.734 0.498 0.052 0.010 1.000 1.000
Residuals 0.706 0.724 0.000 0.000 1.000 1.000

Notes: The estimated treatment effects, ATT2009 and ATT2010, are based on the
‘no-spillover’ case – consistent with all the tests presented in this table. The Placebo
Test compares the factual and counterfactual distributions when we wrongly impose
that the policy intervention was set in 2007; the null hypothesis states that the two
distributions are equal to each other. The ‘No Effect’ Test is similar to the Placebo
Test, but uses the correct timing of the intervention. The Stochastic Dominance Test
assesses whether the counterfactual distribution is everywhere below the factual dis-
tribution. The test statistics are the Kolmogorov-Smirnov (KS) and the Cramer-von
Mises (CM) statistics. We apply each test both on the log odds ratio of deforestation
shares not conditioning on covariates (corresponding to the Unconditional row), and
on the residuals, after partialling the covariates out (corresponding to the Residuals
row). The cells present the p-values based on 500 bootstrap replications. The tests
are proposed and developed by Melly and Santangelo (2015).
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Table 5: Percent Correctly Predicted, Ex-post Optimal List

No Spillovers Case

Constraint: Total Area Number of Municipalities

Optimal Optimal

0 1 0 1

Observed Percent Correct Percent Correct
0 382 73 83.96 439 16 96.48
1 10 25 71.43 16 19 54.29

Overall 83.06 Overall 93.47

Spillovers Case

Constraint: Total Area Number of Municipalities

Optimal Optimal

0 1 0 1

Observed Percent Correct Percent Correct
0 339 116 74.51 435 20 95.60
1 20 15 42.86 20 15 42.86

Overall 72.24 Overall 91.84

Note: Authors’ calculations

Table 6: Comparing Ex-Post Optimal, Priority, and Randomly Selected Lists

No Spillovers Case

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation 1.06 - 1.06 - 1.22 -

Total Carbon Emissions 1.05 622 1.08 975 1.26 3,094

Spillovers Case

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation 1.13 - 1.10 - 1.26 -

Total Carbon Emissions 1.12 1,292 1.12 1,278 1.30 3,271

Note: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon = US$ 20/tCO2.
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