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Abstract

This paper develops a nonparametric estimator for the generalized regression model pro-

posed by Berry and Haile (2009) in which each individual is associated with a group and each

group is subject to observable and unobservable shocks. The motivation for this model is to

estimate the e¤ects of group-level observables on individual outcomes when group-level observ-

ables correlate with group-level unobservables. Examples of groups include markets, regions

and time periods, and group-level observables may include prices and policies. Group-level un-

observables may be indexed by individual characteristics, which allows for more general group

shocks than existing approaches. We propose a two-step estimator in which the �rst step runs

a nonparametric regression of individual outcomes on individual observables within each group.

It is a nonparametric regression in the presence of common shocks. The second step �xes the

individual characteristics and runs a nonparametric quantile instrumental variable regression

across groups of the predicted outcome obtained in the �rst step on group-level variables. It

separates the e¤ects of group-level observables from unobservables. We establish consistency

and convergence rate of the estimator as well as the rates at which both the number of groups

and the number of observations within each group have to increase to guarantee consistency.
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1 Introduction

This paper develops a nonparametric estimator for a generalized regression model in which each in-

dividual is associated with a group and each group is subject to observable and unobservable shocks.

The objective is to estimate the e¤ects of group-level observables on individual outcomes when

group-level observables correlate with group-level unobservables. The framework emcompasses

many nonlinear models of interest such as binary choice and threshold crossing models, censored

regression, and the proportional hazard model. The model can be applied to cross-sectional data

with individuals observed in di¤erent groups, e.g., markets or regions; to repeated cross-sections;

and to panel data. Group-level observables may include prices and policy interventions.

In the generalized regression model of Han (1987), an outcome Yi of individual i is determined

by the nonseparable model

Yi = D (Y �i )

Y �i = G
�
S0i�; "i

�
; (1)

where D(�) is a known weakly increasing function; Y �i is the latent variable that depends on the

observable covariates, Si, and on the unobservable individual heterogeneity, "i; and � is the pa-

rameter of interest. Berry and Haile (2009) extend Han�s model in several dimensions for panel

settings in which each individual i is associated with a group t:1

Yit = D (Y �it)

Y �it = G (Sit; Xt; Ut (Sit) ; "it) ; (2)

where Xt is the observable group-speci�c covariates, and Ut (Sit) is the unobservable "group e¤ect."

Note �rst that the covariates do not enter through an index in G (:). Instead, the model is fully

nonparametric. Second, the model allows for heterogeneous responses across individuals to covari-

ates. I.e., Xt can a¤ect the entire distribution of Y �it , holding Sit and Ut (Sit) �xed. This is not

possible in models with a single stochastic element. In particular, (2) allows for random coe¢ cient

models. Finally, the unobservable group-e¤ects, Uit (Sit), can be correlated with Xt and is indexed

by individual characteristics, Sit. This allows for more general group �xed-e¤ects than existing

approaches. For example, in repeated cross-sections, Xt may be a policy instrument common to all

individuals in each time period and Ut (Sit) may be an unobserved macroeconomic shock correlated

with Xt and with impacts that vary continuously with, say, individuals�wealth, Sit.
1The usual indices for panel data are reversed here: for an individual observed in several time periods, we denote

t for the individual and i for the di¤erent time periods. Each individual plays the role of a "group."
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We propose a nonparametric estimator for two parameters of interest: (a) the conditional dis-

tribution of the observed outcome, Pr (YitjSit; Xt; Ut (Sit)); and (b) the conditional distribution of

the latent outcome, Pr (Y �it jSit; Xt; Ut (Sit)). Formally, let the support of (Sit; Xt; Ut (Sit) ; "it) be

denoted by the product S � X � U � E (� RdS�RdX�R�Rd"), the support of Yit by Y (� R) and

the support of Y �it by Y� (� R). To handle the endogeneity of Xt, we make use of instrumental

variables Zt 2 Z (� RdZ , with dZ � dX). The data set is given by f(Yit; Sit; Xt; Zt) : i = 1; :::; Nt,

t = 1; :::; Tg.

To make the model more concrete, we provide below two detailed examples that motivate the

present paper.2

Example 1 (Binary Choice Demand). Suppose a consumer i in market t decides whether to

buy a product. Let v1 denote the indirect utility from consuming the product and v0 the utility

of the outside option. The indirect utility may depend on consumer�s observable characteristics,

Sit, such as income and gender, and on unobservable heterogeneous tastes "it. It may also depend

on observable characteristics of the product, Xt, such as price, and on the unobserved product

quality, which may be correlated with price. Let the unobserved product quality be denoted by Ut (Sit)

indicating that the product may have di¤erent appeal to consumers with di¤erent characteristics Sit.

For example, women may value the unobservable quality, but men may not appreciate it as much.

The latent utility di¤erence is

Y �it = v1 (Sit; Xt; Ut (Sit) ; "it)� v0 (Sit; "it) ; (3)

and individual�s zero-one purchase decision is given by D (Y �it) = 1 [Y
�
it � 0]. A random coe¢ cient

model is obtained by imposing

Y �it = S0it
 +X
0
t�it + Ut (Sit) + �it;

where "it = (�it; �it) can have arbitrary joint distribution and depend on Sit. The object of inter-

est may be either the demand function Pr (Yit = 1jSit; Xt; Ut (Sit)), or its price-elasticity, or the

conditional distribution of utility di¤erences, Pr (Y �it � y j Sit; Xt; Ut (Sit)).

Example 2 (Patient Outcomes). A problem of public interest is the relationship between hospi-

tal volumes of surgical procedures and individual mortality rates. Numerous studies have documented
2Other possible applications include: (a) impacts of policies on crime [Durlauf, Navarro and Rivers (2010)]; (b)

impacts of roads on individual land use decisions, in particular on deforestation [Souza-Rodrigues, (2014b)]; (c)
e¤ects of local expenditures on advertisement on voter�s behavior; (d) how state taxes a¤ect �rms� investments;
(e) �rm�s entry decision or technology adoption with market-speci�c unobservables; and (f) schooling decision with
school-speci�c unobservables.
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an inverse relationship, but the evidence is weak for most operations; see, e.g., Birkmeyer et al.

(2002), Finks, Osborne and Birkmeyer (2011), and the literature cited therein. The studies that

�nd an inverse relationship suggest that thousands of death per year in the United States could

have been prevented if hospitals with inadequate experience (i.e., with low volume of operations)

have performed less surgical procedures. To study such a relationship, consider a model of health

outcomes of patients i treated in hospital t. The latent Y �it may represent a continuous measure of

actual health status, and the observable outcome Yit may be the binary indicator for death vs. sur-

vival after a surgical intervention. The vector Sit represents patient demographics, such as gender

and age. The vector Xt includes hospital characteristic, such as the volume of operations, sta¢ ng

ratios, size, and for-pro�t status. The unobserved Ut (:) may re�ect unmeasured hospital quality

(resulting from, say, unmeasured quality of sta¤, equipements, etc.). It is indexed by Sit because an

unobserved hospital characteristic that is helpful for patients with one Sit may be harmful to other

patients. Finally, we need instrumental variables for hospital volumes because hospitals with high

volumes very likely are those with high unmeasured quality. A potential candidate for an intrument

is the number of hospital per-capita in the region. The number of hospital per-capita should a¤ect

the level of local competition, and so a¤ect the equilibrium volumes of surgeries, but should be ex-

cluded from the individual mortality equation. To the best of our knowledge, the existing literature

has not implemented any instrumental variable approach.

Berry and Haile (2009) provide conditions to identify both parameters Pr (YitjSit; Xt; Ut (Sit))

and Pr (Y �it jSit; Xt; Ut (Sit)); in the present paper we develop a nonparametric estimator based on

Berry and Haile�s (2009) insights. We propose a two-step estimator that exploits the presence of a

group-level special regressor. The special regressor can be used to trace the conditional distribution

of the individual latent outcome. As commonly assumed in the literature, it must satisfy a usual

large support assumption and enter additively in the G (.) function in (2). However, it does not

have to be exogenous. More precisely, although it must be independent of "it, it does not have to

be independent of Ut (s), for any Sit = s.

The �rst step runs nonparametric regressions of individual outcomes Yit on individual observ-

ables Sit for each group t. It is a nonparametric regression in the presence of common shocks, where

the common shocks include the random function Ut (:). Souza-Rodrigues (2013) studies the prop-

erties of a kernel regression in the presence of common shocks that covers the present case and that

was not previously considered in the literature. The presence of the potentially in�nite-dimensional

object Ut (:) common to all individuals in a group t has to be handled with care because conditional
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densities given Ut (:) may not exist in this context. We present su¢ cient conditions for existence of

conditional densities and �nd that the restrictions are mild: Ut (�) must belong to a separable metric

space and it must be su¢ ciently smooth if Sit is continuously distributed (twice di¤erentiability

su¢ ces). Although kernel asymptotic results have to adapted here, the implementation does not

di¤er from standard kernel regression.

The second step �xes the individual characteristics Sit = s, and runs a nonparametric quantile

instrumental variable regression (NPQIV) across groups of the predicted outcome obtained in the

�rst step on group-level observables, Xt. It separates the e¤ects of Xt from Ut (s). The second

step modi�es the penalized sieve minimum distance estimator (PSMD), developed by Chen and

Pouzo (2009, 2012), to take into account the preliminary estimator from the �rst step. The main

di¢ culty in the second step comes from the fact that the criterion function is not di¤erentiable with

respect to the parameter of interest. Chen and Pouzo (2012) exploit a Lipschitz condition in the

criterion function to obtain consistency and rate of convergence. In the present case however the

preliminary estimator breaks the Lipschitz condition and complicates the proofs of the asymptotic

results. The di¢ culty holds independently on how the preliminary estimator is obtained. In spite

of this di¢ culty, we establish consistency and convergence rate of the estimator. Consistency is

obtained regardless of how fast the number of observations within each group, Nt, increases relative

to the number of groups, T , provided both numbers go to in�nity. In this sense, the estimator is

a "large-N, large-T" estimator. The convergence rate on the other hand depends on how fast Nt

increases compared to T . Perhaps not surprising, the faster the Nt increases relatively to T , the

faster the convergence rate.

This paper relates to a large literature including the generalized regression models (Han (1987),

Manski (1985), Abrevaya (2000), Honore and Lewbel (2002), Ichimura and Thompson (1998),

Chiappori, Komunjer and Kristensen (2011)); the non-linear panel data (Altonji and Matzkin

(2005), Hoderlein and White (2010) and Evdokimov (2010)); the nonseparable models with en-

dogeneity (Chernozhukov and Hansen (2005), Chernozhukov, Imbens and Newey (2007), Chen,

Chernozhukov, Lee and Newey (2011), Torgovitsky (2010)); the multinomial choice model (Berry

and Haile (2010a,b), Fox and Gandhi (2011)); the large-N/large-T panel data (Phillips and Moon

(1999)); the cross-section with common shocks (Andrews (2005)); and the sieves estimator (Ai and

Chen (2003), Chen and Pouzo (2009, 2012), Horowitz and Lee (2007)).

The paper is organized as follows. Section 2 discusses potential advantages in allowing the group-

level unobservables to be indexed by Sit. Section 3 presents Berry and Haile�s (2009) identi�cation
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results. Section 4 exposits the estimator. In Subsection 4.1, we present results for the �rst step

and in Subsection 4.2, for the second step. Section 5 reports a Monte Carlo exercise, and Section 6

presents an application to hospital data, in which we estimate the impacts of the number of surgical

procedures in a hospital on individual survival rates. Section 7 concludes. An Appendix provides

proofs of results stated in the paper and is divided as follows. First, it presents the proofs of the

results for the �rst and second steps (Appendix A.1 and A.2, respectively). Then, it describes the

probabilistic framework that justi�es the approach taken in this paper (Appendix A.3).

Notation The support of X is X = X 1 � ::: � X d. Let fX denote the density of X, and fY=X

denote the conditional density of Y given X. Denote Lp (X ; �) as the space of functions h such

that
�R
jh (x)jp d� (x)

�1=p
< 1, where � is a sigma-�nite measure. De�ne the Lp (X ; �)-norm as

khkpLp(X ;�) =
R
jh (x)jp d� (x); and the Lp-empirical norm as khkpn = 1

n

nP
i=1
jh (Xi)jp. De�ne also

the sup-norm khk1 = supx jh (x)j, and the Euclidean norm, kxkE =
�

dP
i=1

x2
�1=2

. Given a d-tuple

� = (�1; :::; �d) of nonnegative integers, let [�] = �1 + ::: + �d and let D� denote the di¤erential

operator D� = @[�]

@x
�1
1 :::@x

�d
d

. For any positive sequences fang1n=1 and fbng
1
n=1, an � bn means that

there exists positive constants c1; c2 such that c1an � bn � c2an. The expression an . bn means

there is a constant c such that an � cbn. The term an = Op (bn) means that for a positive constant

M , limM!1 lim supn!1 Pr (an=bn > M) = 0; and the term an = op (bn) means that for all " > 0,

we have limn!1 Pr (an=bn > ") = 0.

2 Group-E¤ect as a Random Function

The "group-e¤ect", Ut (Sit), is allowed to be a random function of the individual covariates, Sit.

This is more general than the common approach of allowing a unobserved group-level random

variable, Vt, correlated with Sit. To discuss the potential gains of using a random function, we

begin with an example. Suppose Sit 2 f0; 1g. Then we can write

Ut (Sit) = U0t � 1 fSit = 0g+ U1t � 1 fSit = 1g ; (4)

where 1 f.g is an indicator function and the random variables U0t and U1t may or may not be

independent to each other. We therefore split the original group t into two subgroups and allow

for di¤erent "�xed-e¤ects" a¤ecting each. The observable Xt can be correlated with the vector

(U0t; U1t) while Zt must be independent of (U0t; U1t; "it). In Example 1, the binary choice demand

example, (U0t; U1t) might capture how men and women rank di¤erently the unobserevd quality of
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the good. The ranks could be completely di¤erent and independent to each other, a possibility

that is not allowed if we restrict the group-level unobservables to the scalar Vt. There is no reason

to believe a priori that these ranks should coincide.

In the binary Sit example, model (2) can be rewritten as

Y �it = G (Sit; Xt; Ut (Sit) ; "it)

= eG (Sit; Xt; U0t; U1t; "it) : (5)

The literature on nonparametric identi�cation, on the other hand, typically assumes a structure

of the type

Y �it = G (Sit; Xt; Vt; "it) (6)

where G (�) is typically strictly increasing in Vt; see, e.g., Altonji and Matzkin (2005), Hoderlein

and White (2010) and Evdokimov (2010). The only way in which (5) can be reduced to (6) with

G (�) strictly increasing in Vt occurs when U0t = U1t = Vt. We do not rule out this possibility, but

we allow for cases where U0t 6= U1t. Whether the general or the restrictive case is more reasonable

depends on the application at hand.

It turns out that there exists a simple solution to handle the general case: allow G (�) to be

strictly increasing in Ut (Sit) and carry out the entire analysis conditional on the event fSit = sg.

Conditional on fSit = 0g, for example, equation (5) reduces to

Y �it = G (0; Xt; Ut (0) ; "it)

= G (0; Xt; U0t; "it) (7)

with G (�) strictly increasing in Ut (0). It is possible now to use standard identi�cation results to

recover the objects of interest. The price to be paid is the di¢ culty in estimating (and interpreting)

the e¤ects of Sit on outcomes, as will be clear in Section 3.3

The same reasoning applied to the binary Sit example can be extended to Sit taking �nitely

many or uncountably many values. The extension introduces some di¢ culties and requires extra

notation because Ut (�) can be an in�nite dimensional object. Formally, let J (S) be a space of
3Note that because we allow (U0t; U1t) to be dependent on each other, we can still accommodate a group-level

�xed e¤ect as usual. For example, instead of (4) we can assume

Ut (0) = �0Vt + U0t;

Ut (1) = �1Vt + U1t: (8)

where (U0t; U1t; Vt) may be jointly dependent or independent. Provided G (�) is strictly increasing in Ut (Sit), it is
possible to let �0 < 0 < �1. In this case, the group-level �xed e¤ect Vt may have negative impacts on individuals
with demographics Sit = 0, while having positive impacts on individuals with Sit = 1.
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functions mapping S into U . We endow J (S) with an appropriate norm k�kJ so that
�
J (S) ; k�kJ

�
is a metric space and we equip this space with its Borel sigma-�eld, =. For each group t, we assume

the function Ut (�) is a random object de�ned on the measurable space (J (S) ;=).

Some restrictions on the space J (S) are necessary to obtain asymptotic results. As will be

discussed in Section 4.1, the main restrictions we need are: (i)
�
J (S) ; k�kJ

�
is a separable metric

space equipped with its Borel �-�eld, =, and (ii) the space J (S) is a subset of the twice continuously

di¤erentiable functions when Sit takes uncountable many values. These are mild restrictions.

Remark 1 To illustrate the case where Sit is continuous, let J (S) be the Hilbert space L2 (S).

Take a basis
�
 j
	1
j=1

for L2 (S) and represent the group-e¤ect by Ut (S) =
1P
j=1

Vjt j (S), where Vjt 2

R, for j � 1. The randomness of Ut (Sit) comes from the randomness of the in�nite dimensional

vector (Sit; V1t; V2t; :::). We therefore can write model (2) as

Y �it = G (Sit; Xt; Ut (Sit) ; "it)

= eG (Sit; Xt; (V1t; V2t; :::) ; "it) : (9)

It is possible to represent the model using a single scalar Vt in place of the random vector

(V1t; V2t; :::), i.e., there exists Vt and G (�) such that [Su, Hordelein and White (2010)]

eG (Sit; Xt; (V1t; V2t; :::) ; "it) = G (Sit; Xt; Vt; "it) :

However, there is no guarantee that G (�) will be strictly increasing in Vt. The lack of monotonic-

ity of G (�) in Vt makes it di¢ cult to identify the parameters of interest.

When Sit is continuous, the same simple solution to handle the binary Sit case can be applied:

assume G (�) is strictly increasing in Ut (Sit) and carry out the analysis conditional on the event

fSit = sg.

Note that we cannot allow Ut (Sit) to be an unknown arbitrary deterministic function of Sit. In

this case, model (2) reduces to

Y �it = G (Sit; Xt; Ut (Sit) ; "it)

= Gt (Sit; Xt; "it) ; (10)

and, because Gt could be arbitrarily di¤erent for di¤erent groups t, it would be impossible to

identify e¤ects of Xt on the outcomes.

Finally, an important observation that will be used in the rest of the paper is that all individuals

in group t are a¤ected by the common factors (Xt; Ut (�) ; Zt) 2 X � J (S) � Z. We denote the
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common factors by Ct = (Xt; Ut(�); Zt) and let C = X � J (S)�Z. In case of a binary Sit, the

common shock is the vector Ct = (Xt; U0t; U1t; Zt). In case Sit is continuous, the entire function

Ut (�) is part of the common shock of group t, while Ut (s) is a random variable that only a¤ects

those in group t with Sit = s. Note also that the group-level Zt is part of the common shocks since

it a¤ects all individuals in group t, despite the fact it has indirect e¤ects on Y �it .

3 Identi�cation

The estimation procedure we propose follows closely the identi�cation results of Berry and Haile

(2009). They impose the following:4

Assumption 1 For all s 2 S and x 2 X , there exists a known ey 2 R such that,
Pr [D (G (Sit; Xt; Ut (Sit) ; "it)) � ey j Sit = s;Xt = x;Ut (s) = u] is strictly decreasing in u.

Su¢ cient for this condition is to assume that G (�) is strictly increasing in Ut (�). In the binary

choice model, Yit = 1 [Y �it � 0], we take ey = 0.
The second assumption states which distributions are known. We assume that (i) the joint

distribution of (Yit; Sit; Xt; Zt) is known and that (ii) the distribution of individual observable

variables (Yit; Sit) in a given group t is known. We denote the distribution within group t by

Pr (�j t).

Assumption 2 (i) The joint distribution Pr (Yit; Sit; Xt; Zt) is known; and

(ii) For all y 2 Y and s 2 S, the distribution Pr (Yit � y; Sit � s j t) is known for each t.

The common shock a¤ecting group t is the random Ct = (Xt; Ut(�); Zt) 2 C. De�ne the measur-

able space (C;B) where B is the Borel �-�eld. Let the distribution of Ct be denoted by Qt (de�ned

on (C;B)) and de�ne the �-�eld generated by the common shock by � (Ct) = � (Xt; Ut(�); Zt).

Note that all that can be learned from the observations (Yit; Sit) within the group t is the con-

ditional distribution of (Yit; Sit) given the sub-sigma-�eld � (Ct). It is not possible to recover the

unconditional distribution of (Yit; Sit) in group t except when (Yit; Sit) is independent of Ct. But

this independence is ruled out by assumption. Assuming the distribution of (Yit; Sit) in group t

is known is therefore equivalent to assuming that the conditional distribution (Yit; Sit) given the

4For a complete discussion of the assumptions and the proof of identi�cation the reader is referred to Berry and
Haile (2009).
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sub-sigma-�eld � (Ct) is known, even though the last object seems very abstract. In sum, we have

that

Pr (Yit � y; Sit � s j t) = Pr (Yit � y; Sit � s j � (Ct)) : (11)

A formal discussion about the underlying probability space that justi�es Assumption 2(ii) and

the equality (11) is given in Appendix A.3 (see Lemma 3 in the Appendix A.3 and the discussion

that follows it).

The next assumption requires fully independent instruments as usual in non-linear models:

Assumption 3 (Ut (Sit) ; "it) ? Zt j Sit.

De�ne

Pt (s; Ct) � Pr (Yit � ey j Sit = s; � (Ct)) ;

where ey is the value referred in Assumption 1. By Assumption 2(ii), Pt (s; Ct) is known. Moreover,
by construction, we have that

Pt (s; Ct) � Pr (Yit � ey j Sit = s;Xt; Ut (�) ; Zt)

= Pr (Yit � ey j Sit = s;Xt; Ut (s))

� hs (Xt; Ut (s)) . (12)

where the �rst equality holds by the de�nition of � (Ct); the second equality is the result of two

facts: (i) the variables Yit and Zt are independent given (Sit; Xt; Ut (Sit)); and (ii) condition-

ing on the event fSit = sg \ fXt = x;Ut (�) = u (�)g is equivalent to conditioning on fSit = sg \

fXt = x;Ut (s) = u (s)g (this is proved in Appendix A.3). The third line de�nes the function hs (�).

Note that, by Assumption 1, hs(x; u) is strictly decreasing in u.

Equation (12) is the fundamental equation of this paper. The identi�cation and estimation

results depend on this relationship. Because (i) Pt (s; Ct) is known, (ii) hs(x; u) is strictly de-

creasing in u, and (iii) Zt and Ut (s) are independent random variables, the function hs (�) can be

nonparametrically identi�ed using Chernozhukov and Hansen�s (2005) identi�cation results.

Formally, the unobservable Ut (s) can be normalized to have uniform distribution over [0,1].

Once that hs is identi�ed, we can invert it to recover the normalized Ut (s), i.e.,

Ut (s) = h�1s (Xt; Pt (s; Ct)) ;

where h�1s is the inverse of hs. After recovering the normalized Ut (s) for each s, we can identify the

structural outcome distribution, Pr (YitjSit = s;Xt = x;Ut (s) = u). That is precisely the approach
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adopted in Berry and Haile (2009).5

The next assumption is a "non-linear bounded completeness" assumption that is su¢ cient for

Chernozhukov and Hansen�s (2005) results. From now on, we normalize the distribution of Ut (s)

to be uniform on [0,1], for each s 2 S.

Assumption 4 (i) Let L(u) be the convex hull of functions m(x; u) satisfying:

(a) for all z 2 Z, Pr (hs (Xt; Ut (s)) � m (Xt; u) j Zt = z) 2 [u� "q; u+ "q], for "q > 0; and

(b) for all x 2 X, m (x; u) 2 px �
�
hs : fPsjX;Z (hsjx; z) � "f > 0;8z with fXjZ (xjz) > 0

	
,

where fPsjX;Z is the conditional density of Pt (s) given (Xt; Zt) and fXjZ is the conditional

density of Xt given Zt.

(ii) For all (x; u), assume hs(x; u) 2 px.

(iii) De�ne �t � hs(Xt; Ut (s))� hs(Xt; u) and let the density of �t be bounded and continuous

on R a.s..

(iv) For any u 2 (0; 1), for any bounded function B(x; u) = m(x; u)� hs(x; u) with m(�; u) 2

L(u), assume

E [B(Xt; u) (Xt; Zt; u)jZt] = 0 a:s:

only if B(Xt; u) = 0 a.s. for  (x; z; u) =
R 1
0 f�t (�B(x; u)jx; z) d�.

Based on this reasoning, Berry and Haile (2009) prove the following theorem:

Theorem 1 Suppose Assumptions 1-4 hold, then the conditional probability Pr (YitjSit; Xt; Ut (Sit))

is identi�ed.

To identify the conditional distribution Pr (Y �it jSit; Xt; Ut (Sit)), they introduce a group-level

special regressor. Formally, they partition Xt as
�
X
(1)
t ; X

(2)
t

�
2 X (1)�X (2) and proceed with the

following assumptions:

Assumption 5 (Large Support) Supp
�
X
(1)
t jSit; X(2)

t ; Ut (Sit)
�
= R.

Assumption 6 (Separability) G (Sit; Xt; Ut (Sit) ; "it) = X
(1)
t + g

�
Sit; X

(2)
t ; Ut (Sit) ; "it

�
.

Assumption 7 (Conditional Independence) "it ? X
(1)
t j Sit; X(2)

t ; Ut (Sit).

5Although we could have di¤erent instruments Zt (s) corresponding to di¤erent demographics Sit = s, we do not
exploit that possibility here.
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Assumptions 5 and 6 are standard for models with a special regressor. Assumption 7 allows the

special regressor to be correlated with group-e¤ects, so X(1)
t does not have to be exogenous. The

following theorem is then proved by Berry and Haile (2009):

Theorem 2 Suppose Assumptions 1-7 hold, then the probability distribution Pr (Y �it jSit; Xt; Ut (Sit))

is identi�ed.

Next note a relationship between the distribution Pr (Y �it � y j Sit = s;Xt = x; Ut (s) = u) and

the function hs (x; u) that simpli�es the estimation procedure considerably. De�ne D�1 (y) =

sup fq : D (q) � yg and let x(1) be such that
�
y � x(1)

�
=
�
D�1 (ey)� x(1)�, for a given �y; x(1)�.

For any pair
�
y; x(1)

�
, a corresponding x(1) exists by Assumption 5.

We have then the sequence of equalities:

Pr
�
Y �it � y j Sit = s;X

(1)
t = x(1); X

(2)
t = x(2); Ut (s) = u

�

= Pr
�
X
(1)
t + g

�
Sit; X

(2)
t ; Ut (Sit) ; "it

�
� y j Sit = s;X

(1)
t = x(1); X

(2)
t = x(2); Ut (s) = u

�

= Pr
�
g
�
Sit; X

(2)
t ; Ut (Sit) ; "it

�
� y � x(1)t j Sit = s;X

(2)
t = x(2); Ut (s) = u

�

= Pr
�
g
�
Sit; X

(2)
t ; Ut (Sit) ; "it

�
� D�1 (ey)� x(1) j Sit = s;X

(2)
t = x(2); Ut (s) = u

�

= Pr
�
X
(1)
t + g

�
Sit; X

(2)
t ; Ut (Sit) ; "it

�
� D�1 (ey) j Sit = s;X

(1)
t = x(1); X

(2)
t = x(2); Ut (s) = u

�

= Pr
�
Yit � ey j Sit = s;X

(1)
t = x(1); X

(2)
t = x;Ut (s) = u

�

= hs

�
x(1); x(2); u

�
(13)

where the �rst equality comes from Assumption 6 (separability); the second equality, from Assump-

tion 7 (conditional independence); the third equality, from Assumption 5 (large support); the �fth

equality, from the model (2); and the last equality, from the de�nition of hs.

Hence the distribution function of Y �it evaluated at y and conditioned on
�
s; x(1); x(2); u

�
equals

the function hs evaluated at the point
�
x(1); x(2); u

�
, where x(1) = x(1)+D�1 (ey)�y. All information

about the distribution of the latent variable is therefore contained in the function hs; we can
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estimate this conditional distribution directly using a quantile IV estimator bhs. Note that di¤erent
than usual, the quantile approach here is used to identify a distribution function directly, and

not its inverse. I.e., it identi�es Pr (Y �it � y j Sit; Xt; Ut (Sit)), and not the quantile of Y �it given

(Sit; Xt; Ut (Sit)).

To identify the outcome distribution Pr (YitjSit; Xt; Ut (Sit)), we can put (13) together with the

de�nition Yit = D (Y �it) to obtain

Pr (Yit � y j Sit = s;Xt = x;Ut (s) = u)

= Pr
�
Y �it � D�1 (y) j Sit = s;Xt = x; Ut (s) = u

�
= hs

�
x(1) +D�1 (ey)�D�1 (y) ; x(2); u

�
:

Finally, if the object of interest is the e¤ect of the demographics Sit on Y �it , instead of the e¤ect

of Xt, then, the researcher can estimate the di¤erence

hs0 (x; u)� hs (x; u)

for s 6= s0. Some caution is needed in how to interpret this object, though. If the group-e¤ect

were a random variable, Vt, this di¤erence would capture the e¤ect of Sit keeping the group-e¤ect

constant. However, when the group-e¤ect is a random function and Ut (s) is normalized to have

uniform distribution, then the equality Ut (s) = Ut (s
0) = u �xes the quantiles of the non-normalized

Ut (s) and Ut (s0). I.e., by moving s to s0, we are also moving the value of the non-normalized Ut (s)

from its u-quantile to the value of the same u-quantile of the non-normalized Ut (s0). In this sense,

all we can estimate is the across-groups quantile e¤ect of Sit.

4 Estimator

The estimator relies on the equations (12) and (13). In the �rst step, we estimate

Pt (s; Ct) � Pr (Yit � ey j Sit = s; � (Ct)) ;

for each group t. This requires a nonparametric regression in the presence of common shocks. An

approach similar to that employed by Andrews (2005) for the linear regression model is adapted

and applied here. Souza-Rodrigues (2013) studies the properties of the kernel regression estimator

in the presence of common shocks that covers the present case when Sit is continuously distributed.

In the second step, instead of �xing the group t (or conditioning on � (Ct)), we �x s and let

(Xt; Ut (s)) vary across t. It separates the e¤ects of Xt and Ut (s) on individual outcomes. We treat
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Pt (s; Ct) = hs (Xt; Ut (s)) as a nonparametric quantile IV model (NPQIV) and estimate hs using the

penalized sieve minimum distance estimator (PSMD) developed by Chen and Pouzo (2009, 2012).

We have to modify the PSMD estimator to take into account the preliminary estimator bPt (s) for
Pt (s; Ct). We show that the estimator is consistent provided both the number of groups, T , and

the number of observations within groups, Nt, go to in�nity. It is possible to obtain consistency

when Nt is smaller than T , but the price to be paid is a slower convergence rate.6

4.1 First Step: Within Groups Estimator

Similar to Andrews (2005), we assume the cross-sectional dependence within group t only results

from the common factors Ct.

Condition 1 For each group t, fYit; Sit : i � 1g are i.i.d. conditional on � (Ct).

Condition 1 follows from Assumption A.1 and Corollary 1 in the Appendix A.3. Here we

consider two cases: Sit is discrete and Sit is continuous.

4.1.1 Discrete Case

When Sit is discrete, the parametric approach employed by Andrews (2005) for the linear regression

model is directly applicable. Suppose Sit can take �nitely many values, say Sit 2 f0; 1; ::; Lg. To

make the connection with Andrews (2005) explicit, de�ne, for l = 1; ::; L,

Slit =

�
0 if Sit 6= l

1 if Sit = l

and de�ne Pr
�
Yit � ey j S1it; :::; SLit ; Ct� by

Pr
�
Yit � ey j S1it; :::; SLit ; Ct� = �0 (Ct) + �1 (Ct)� S1it + :::+ �L (Ct)� SLit

where �l (Ct) are random coe¢ cients measurable with respect to Ct. We have therefore

Pr (Yit � ey j Sit = 0; Ct) = �0 (Ct)

Pr (Yit � ey j Sit = l; Ct) = �0 (Ct) + �l (Ct) ;

6Note that it is not possible to estimate Pr (Yit � ey j Sit = s;Xt; Ut (s)) directly using both cross-sectional and
group variation simultaneously. The reason is that once we have cross-sectional observed variation Sit, we also should
consider the presence of the unobserved heterogeneity "it. But once the individual heterogeneity is included, it
would be impossible to separate it from the unobservable Ut(�) and, so, it would be impossible to invert an equation
monotonic in Ut(�) and identify the "group-e¤ect". On the other hand, if s is �xed and we explore the group-level
variation, then all the unobservables across groups is captured by the scalar Ut (s) and it is possible to identify it.
That is the reason why we have to break the approach into two steps: the �rst one exploring within group variation
and the second one exploring across group variation. In some situations, the researcher may not have access to the
micro-data. In this case, it is still possible to use a restricted version of this estimator provided one observes the
covariates Xt and some measure of Pt(s). But the measure of Pt(s) may still have e¤ects on the rate of convergence
and the asymptotic distribution.
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for l = 1; ::; L.

For each group t, we run a linear regression of 1 fYit � eyg on S1it; :::; SLit and take the estimated
prediction of 1 fYit � eyg given Sit = s as our estimator bPt (s), i.e., bPt (s) = b�0 + b�s.

Under some assumptions on existence of moments [see Assumptions 2 and 3 in Andrews (2005)],

it is possible to show that b�l !p �l (Ct), for l = 0; 1; :::; L, and that the parametric rate of

convergence is achievable [see Theorem 4 in Andrews (2005)]. More important for our objectives

here is to show that

E

���� bPt(s)� Pt (s; Ct)���2 j Ct� = et (s; Ct)�N�1
t

where Nt is the number of observations within group t and et (s; Ct) is a � (Ct)-measurable random

variable that is almost surely �nite. This result is obtained in Proposition 1 and is used in the

second step of the estimator.

Proposition 1 Let Condition 1 in the main text and Condition 9 in Appendix A.1 hold. Then,

E

���� bPt(s)� Pt (s; Ct)���2 j Ct� = et (s; Ct)�N�1
t (14)

where et (s; Ct) is a � (Ct)-measurable random variable almost surely �nite that is de�ned by (29)

in Appendix A.1.

4.1.2 Continuous Case

When Sit is continuous, we run a nonparametric kernel regression of 1 fYit � eyg on Sit for each
group t. The Nadaraya-Watson kernel estimator is:

bPt (s) =
PNt

i=11 fYit � eygK �Sit�sb

�
PNt

i=1K
�
Sit�s
b

� (15)

where K(�) is the kernel function and b is the bandwidth.

The literature on kernel estimators manipulates conditional densities of random variables, but it

is well-known that conditional densities do not necessarily exist. In the present case the conditioning

argument involves the in�nite-dimensional function Ut (:). If Ut (:) is not restricted to a suitable

space with a carefully constructed sigma-�eld, the conditional density of Yit given (Sit; Ct) may

not exist. If it does not exist, the probability limit of the kernel estimator may not be measurable

with respect to � (Ct), in which case the second step of the estimator, bPt (s) = hs (Xt; Ut (s)), is

meaningless.7

7Formally, the probability limit of kernel estimator can be obtained using the local time of Yit, as in Wang and
Phillips (2009). However, the probability limit may not be measurable with respect to � (Ct), as needed here.
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We appeal to the disintegration theory for conditional distributions, that can be found in Pollard

(2002), to let the common shocks be as general as possible and still having well-de�ned conditional

densities. We therefore impose some restrictions on Ct and work as closely as possible to the

standard kernel literature [Souza-Rodrigues (2013)].

For the sake of brevity, we relegate to the appendix (Appendix A.1) the assumptions of the kernel

literature adjusted to the present case. Su¢ cient assumptions to obtain existence are discussed in

Souza-Rodrigues (2013) and the references cited there. Brie�y, the key su¢ cient condition is that

C must be a separable metric space equipped with its Borel �-�eld. This is satis�ed provided the

space of functions J (S) is a separable metric space also equipped with its Borel �-�eld, which is a

mild restriction. Here we directly impose existence of the conditional density of (Y �it ; Sit) given Ct,

denoted by ft (y�; sjc), where y� 2 Y�, s 2 S and c 2 C.

Remark 2 To make the conditional density more concrete, take �rst the example in which Sit is

binary. In this case, the common shock for group t is the vector Ct = (Xt; U0t; U1t; Zt) and the

conditional density of (Y �it ; Sit) given Ct is the usual density

fY �it;SitjCt (y
�; sjc) = fY �it;SitjXt;U0t;U1t;Zt (y

�; sjx; u0; u1; z) :

The case where Sit is continuous is similar. Take the example where J (S) is the space L2 (S).

Then Ut (S) =
1P
j=1

Vjt j (S). The common shock Ct = (Xt; Ut(�); Zt) can be represented by the in�-

nite dimensional vector Ct = (Xt; V1t; V2t; :::; Zt). Conditioning on the event fCt = cg is therefore

equivalent to conditioning on f(Xt; V1t; V2t; :::; Zt) = (x; v1; v2; :::; z)g, and so

fY �it;SitjCt (y
�; sjc) = fY �it;SitjXt;V1t;V2t;:::;Zt (y

�; sjx; v1; v2; :::; z) :8

The object of interest in the �rst step is (for Qt-almost all c 2 C)

Pt (s; c) � Pr (Yit � ey j Sit = s; Ct = c)

=

Z
1
�
y� � D�1 (ey)	 fY �itjSit;Ct (y�js; c) dy�

=

Z D�1(ey)
�1

fY �itjSit;Xt;Ut(Sit) (y
�js; x; u (s)) dy�:

To use Taylor expansion as usually done in the kernel literature, we need Pt (s; c) to be twice

continuously di¤erentiable with respect to s (for Qt-almost all c). We need to assume the di¤er-

entiability of fY �itjSit;Xt;Ut(Sit) (y
�js; x; u (s)) with respect to (s; u (�)) as well as the di¤erentiability

8The intuition we may gain in this example, by moving from abstract spaces of functions to space of random
vectors, may not apply when C is not a Hilbert space. The reason is that, although we may approximate any of the
separable metric spaces by simpler spaces (such as the space of �nite polynomials, for example), the conditioning
argument does not hold without running into problems such as the Borel paradox [see, e.g., Rao (1988)].
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of u (�) with respect to s. That is why we stated earlier that the main restrictions we need to

impose on the space
�
J (S) ; k�kJ

�
are: (i) it must be a separable metric space equipped with the

Borel �-�eld (to obtain existence of densities); and (ii) the space J (S) is a subset of the twice

continuously di¤erentiable functions (to obtain the di¤erentiability of Pt (s; c)).

The full discussion of the su¢ cient conditions to obtain consistency with rate is in Appendix

A.1. For our purposes here, we only need the following:

Proposition 2 Let Condition 1 in the main text and Conditions 10-16 in Appendix A.1 hold. LetbPt (s) be the kernel regression estimator de�ned in (15). Then,
E

���� bPt(s)� Pt (s; Ct)���2 j Ct� = et (s; Ct)�N
� 4
4+ds

t (16)

where ds is the dimension of Sit, and et (s; Ct) is a � (Ct)-measurable random variable that is

Qt-almost surely �nite and is de�ned by (35) in Appendix A.1.

4.1.3 Uniform Rate

Although Propositions 1 and 2 are necessary for our purposes, they are not su¢ cient. We need

uniform convergence in the �rst step. More precisely, we need to bound from above the quantity

E

�
max
1�t�T

��� bPt (s)� Pt (s; Ct)���2� :
We obtain this bound in the next Proposition:

Proposition 3 Let the conditions in Proposition 1 hold if Sit is discrete and conditions in Propo-

sition 2 hold if Sit is continuous. If, for all i � 1, fYit; Sit; Ct : t � 1g are independent across t and

if

sup
t�1

E [et (s; Ct)] <1; (17)

then,

E

�
max
1�t�T

��� bPt (s)� Pt (s; Ct)���2� � const:min

(
T

N2r
min;t

; 1

)
;

where Nmin;T � min fN1; :::; NT g; r = 1=2 if Sit is discrete; and r = 2=(4 + ds) if Sit is a ds-vector

of continuously distributed variables.
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4.2 Second Step: Across Groups Estimator

In the second step we estimate hs (x; u). To simplify notation, we denote Pt (s; Ct) by Pt (s). For

�xed s 2 S and u 2 (0; 1), the moment restriction implied by the model is9

E [1 fPt (s) � hs (Xt; u)g jZt] = 1� u:

De�ne the residual function by

�u (Pt (s) ; Xt;hs) � 1 fPt (s) � hs (Xt; u)g � (1� u), (18)

then

E [�u (Pt (s) ; Xt;hs) jZt] = 0: (19)

Denote by h0s the unique (identi�ed) function that satis�es (19). For notational simplicity,

sometimes we omit both indices s and u from both hs (�; u) and �u (�) when it is clear enough from

the context. De�ne the moment function by

m (Zt; hs) � E [�u(Pt (s) ; Xt;hs)jZt]

= E
�
FPsjX;Z (hs(Xt; u)jXt; Zt) jZt

�
� (1� u)

=
R �
FPsjX;Z (hs(x; u)jx;Zt)

�
fXjZ (xjZt) dx� (1� u) (20)

where FPsjX;Z is the conditional distribution function of Pt (s) given (Xt; Zt) and fXjZ is the

conditional density of Xt given Zt.

If we observed Pt (s), we could apply the PSMD estimator developed by Chen and Pouzo (2009,

2012) directly. We could let m (Zt; hs) be an estimator of m(Zt; hs) (e.g., a series least squares

estimator); assume h0s (x; u) belongs to some space of functions H; and let fHK(T ) : T = 1; 2; :::g

be an increasing sequence of sieves spaces (HK � HK+1 � ::: � H) such that [1T=1HK(T ) is dense in

the space H. Then the PSMD estimator hs 2 HK(T ) of h0s would minimize the following criterion

function:

hs = argmin
hs2HK(T )

(
1

T

TX
t=1

m (Zt; hs)
0m (Zt; hs) + �TcMT (hs)

)
(21)

where the penalization parameter �T � 0 is such that �T ! 0 as T ! 1; and cMT (h) is the

penalization function. Chen and Pouzo (2012) provide the conditions under which hs is consistent

and establish its rate of convergence.

9Because u = Pr [Ut (s) � u] = Pr [Ut (s) � ujZt] = Pr [hs (Xt; Ut (s)) � hs (Xt; u) jZt] =
E [1 fPt (s) � hs (Xt; u)g jZt], where the third equality uses the fact that hs # u.
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In the present case however we do not have Pt(s) but rather bPt (s). So we slightly modify the
criterion function and use instead

bhs = argmin
hs2HK(T )

(
1

T

TX
t=1

bm (Zt; hs)0 bm (Zt; hs) + �TcMT (hs)

)
(22)

where bm (Zt; hs) is an estimator ofm (Zt; hs) that uses the feasible sample n bPt(s); Xt; Zt

oT
t=1
. Next,

we discuss the consistency of bhs and its convergence rate.
4.2.1 Consistency

We adapt the conditions imposed by Chen and Pouzo (2009, 2012) and assume the following:

Condition 2 (i) fXt; Ut (�) ; Zt : t � 1g are i.i.d. across t, and

(ii) For any i; j � 1, and any t 6= t0, (Yit; Sit) is independent of
�
Yjt0 ; Sjt0

�
.

Condition 3 For any (y; s; u) 2 Y� � S � U , assume

Pr (Y �it � yjSit = s;Xt = �; Ut (s) = u) 2 H.

De�ne the weight function

! (x) =
�
1 + kxk2E

���=2
;

for some �nite � > 0. The parameter space H is either

H = fh 2 �� (X ; !) : 0 � h � 1g ;

or

H =
�
h 2W�

p (X ; !) : 0 � h � 1
	
;

where:

(a) �� (X ; !) is the weighted Hölder space. Let � = � + 
, where � is a nonnegative integer,

0 < 
 � 1, and � > 2dx. The weighted Hölder space is

�� (X ; !) = fh 2 C� (X ) : k!hk�� <1g

where C� (X ) is the space of �-times continuosly di¤erentiable functions and

khk�� = max
0�j�j��




D�h




1
+max
j�j=�

sup
x 6=�x

j D�h(x)�D�h(�x) j
kx� �xk
E

:
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(b) W�
p (X ; !) is the weighted Sobolev space. For some scalar integer � > 2dx, and for 1 < p <1,

the weighted Sobolev Space is

W�
p (X ; !) =

n
h 2 Lp (X ; leb) : k!hkpW�

p
<1

o
;

where

khkW�
p
=

P
0�j�j��




D�h




Lp(leb)

:

De�ne the norm k:kH to be either khkH = k!hk�� if H � �� (X ; !), or khkH = k!hkpW�
p
if

H �W�
p (X ; !).

Condition 4 The penalization parameter is �T � 0, �T ! 0 as T ! 1. If �T > 0, the penalty

function is either10

(a) cMT (h) =





�1 + kxk2E���=2 h (x)




��
, with � > 0, if H � �� (X ; !); or

(b) cMT (h) =





�1 + kxk2E���=2 h (x)




W�
p

, with 0 < � < �, if H �W�
p (X ; !).

Condition 5 fHK(T ) : T = 1; 2; :::g is a sequence of non-empty closed (under k�k1;!) subsets of

H satisfying HK � HK+1 � H such that (i) [1T=1HK(T ) is dense in the space H under k�k1;!; and

(ii) HK(T ) is bounded in H under k:kH.

Condition 6 E [�u (Pt (s) ; Xt;h0s) jZt] = 0 a.s., and for any hs 2 H with E [�u (Pt (s) ; Xt;hs) jZt] =

0 a.s., we have khs � h0sk1;! = 0.

Condition 2(i) requires the common shocks Ct to be i.i.d. across groups t. Because Pt (s) is

� (Xt; Ut (�) ; Zt)-measurable, Condition 2(i) implies that the unfeasible sample fPt(s); Xt; ZtgTt=1 is

i.i.d., as required by Chen and Pouzo (2009, 2012). This condition follows directly from Assumptions

A.1, A.2 and Lemma 4 in the Appendix A.3.

Condition 2(ii) imposes independence of (Yit; Sit) across groups. It implies that the �rst step esti-

mators
n bPt(s) : t � 1o are independent of each other, and, so, the feasible sample n bPt(s); Xt; Zt

oT
t=1

is independent across t. However,
n bPt(s); Xt; Zt

oT
t=1

is not i.i.d. because there is no guarantee thatn bPt(s) : t � 1o are identically distributed.
10Both penalty functions are lower-semicompact. See Edmund and Triebel (1996).
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Condition 3 assumes that, for any �xed (y; s; u), Pr (Y �it � yjSit = s;Xt = �; Ut (s) = u) belongs

to a space that can be well approximated by some sieves spaces. Note that because

Pr (Y �it � y j Sit = s;Xt = x;Ut (s) = u) = h0s

�
x(1) +D�1 (ey)� y; x(2); u� ;

this condition implies that h0s (�; u) 2 H, for any �xed s and u. Because of the large support

assumption (Assumption 5), we use the weight function ! (:) to control the tail behavior of hs (:).

We obtain consistency of bhs under the weighted sup-norm
khsk1;! = sup

x2X
j! (x)hs (x; u)j ;

and we make use of Theorem 3.2 of Chen and Pouzo (2012) because it does not require H to be

compact under the strong norm k�k1;!, as in the present case. Theorem 3.2 of Chen and Pouzo

(2012) requires lower-semicompact penalty function. I.e., the set
n
h 2 H : cMT (h) < M

o
, for �nite

M , must be compact under the norm khsk1;!. Condition 4 establishes the penalization terms that

satisfy these requirements.

Condition 5 allows for both linear and non-linear sieves spaces, HK(T ). It is satis�ed, in partic-

ular, if we use

HKT
=

(
h 2 H : h (�) =

KTP
k=1

ak k (�) , 0 � h � 1; khkH � BT

)
;

BT ! 1 slowly as T !1;

where f kg
kh
k=1 is a sequence of known tensor product basis functions such as splines and Fourier

series if H � �� (X ; !), and wavelets if H � W�
p (X ; !). In these cases HK(T ) is compact in H

under k�k1;! and bounded under k:kH. Shape-preserving sieves that nonlinearly transform the

linear approximations also can be used. Condition 5(ii) is not imposed by Chen and Pouzo (2012),

but is important here to control how fast KT can increase with T .

Condition 6 imposes identi�cation of h0s. It follows from Assumptions 1-7 and Theorems 1 and

2, as discussed in Section 3.

Given the de�nition of the sieves estimator (equation (22)), the assumptions on the feasible

(and unfeasible) data set (Condition 2), the parameter space (Condition 3), the penalization term

(Condition 4), the approximating sieves spaces (Condition 5) and the identi�cation result (Con-

dition 6), all we need next is the uniform consistency of the criterion function in order to prove

consistency of the estimator. This requires some restrictions on the estimator bm (Zt; h) and on the
moment function m (Zt; h).
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We take bm (Zt; h) to be a series least square estimator of m (Zt; h). So, let fp1(Z); p2(Z); :::g be
a sequence of known basis functions that approximate any square integrable real-valued function

of Z well. Denote pJT (Z) = (p1(Z); :::; pJT (Z))
0 a (JT � 1)-vector and P = (pJT (z1)0; :::; pJT (zT )0)0

a (T � JT )-matrix. The series least squares estimator is given by:

bm (z; hs) = pJT (z)0(P 0P )�
TX
t=1

pJT (Zt)�u

� bPt (s) ; Xt;hs

�
where (P 0P )� is the pseudo-inverse matrix of P 0P . We impose the following:

Condition 7 (i) Z is a compact connected subset of Rdz with Lipschitz continuous boundary and

fZ is bounded and bounded away from zero over Z;

(ii) max1�j�JT E
h
jpj (Zt)j4

i
� const:; and the smallest and largest eigenvalues of E

�
pJT (Z)pJT (Z)0

�
are bounded and bounded away from zero for all JT ;

(iii) Denote �T � supz2Z kpJT (z)kE, and let �2TJT = o(T );

(iv) There exists of a function pJT (Z)0� such that, uniformly over h 2 HK(T ),

m (�; hs)� pJT (�)0�

2LQ = Op
�
b2m;JT

�
;

where LQ is either the L2 or the L1 norm.

Condition 8 (i) For each s 2 S, FPsjX;Z has a density, fPsjX;Z(pjx; z), that is continuous in

(p; x; z) and bounded, supp2[0;1] fPsjX;Z (pjx; z) � K < 1, for some �nite K and for almost all

(x; z); and (ii) for some � > �� dx
2 > 0, E

��
1 + kXtk2E

�2(�+�)�
<1.

Condition 7 is imposed in Chen and Pouzo (2012) and is standard in the nonparametric series

regression literature, except that we require existence of higher order moments for E
h
jpj (Zt)j4

i
.

If pJT (Z) is a spline, cosine/sine or wavelet sieve, then �2T � JT ; see e.g. Newey (1997) or Huang

(1998). In this case Condition 7(iii) requires J2T =T = o(1). Condition 7(iv) is satis�ed with

bm;JT = J
��m=dz
T if m (�; hs) belongs to a Hölder space: m (�; hs) 2 ��m (Z), with �m > dz=2 for all

h 2 HKT
.

Finally, Condition 8 implies that E
n
[m (Zt; hs)]

2
o
is continuous on

�
H; k�k1;!

�
and Condition

8(ii) imposes existence of higher order moments of Xt.

De�ne Nmin;T � min fN1; :::; NT g. Proposition 4 follows:

Proposition 4 Let Conditions 2-8 hold. Also, let the conditions in Proposition 3 hold for the �rst

step estimator. Let (i) JT ;KT !1, KT � JT , KT � JT , (ii) �2T � JT , (iii)"
KT

T
+
K2
T

T
min

(
T

N2r
min;T

; 1

)#
! 0 (23)
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as (T;Nmin;T )!1, and (iv)

max

( 
KT

T
+
K2
T

T
min

(
T

N2r
min;T

; 1

)!
;

�
JT
T
+ b2m;JT

�)
= O (�T ) :

Then, for a �xed s 2 S and a �xed u 2 (0; 1),


bhs (u)� h0s(u)



1;!

= op (1)

which implies 


bhs(u)� h0s(u)



L2(fX)

= op (1)

Remark 3 The proof here is similar to Chen and Pouzo (2012), except that, by considering the

�rst step estimator, we have to impose both the extra condition (23) and the results of Proposition

3. The extra conditions are needed to guarantee that the feasible criterion function is uniformly

close (with probability approaching 1) to the populational criterion function. The main di¢ culty

in the proof comes from the fact that the preliminary estimator breaks the L2-Lipschitz condition

of the criterion function used by Chen and Pouzo (2012). Their proof of consistency relies on an

empirical process argument in which the Lipschitz condition is used to bound the entropy number

of the criterion function and, so, to uniformly approximate it to its populational version. In the

present case, however, we cannot rely on such argument, so we have to check explicitly how the

entropy number depends on the behavior of the �rst step estimator and impose extra conditions to

control its behavior.

Remark 4 From equation (12), it is clear that we could rewrite the model as (see Horowitz and

Lee, 2009)

Pt (s) = hs (Xt) + Ut (s) , with Pr [Ut (s) � ujZt] = u:

In the present case we can view the model as

Pt (s) = hs (Xt) + Ut (s) + "t (s) , with Pr [Ut (s) � ujZt] = u;

where "t (s) = Pt (s) � bPt (s) is the estimation error from the �rst step. The composite error

here Ut (s) + "t (s) has larger variance than the error term in the model where Pt (s) is known.

Intuitively, to control the variance of bhs we need to control the variance of the errors. Because
the criterion function is non-linear in "t (s) we cannot average these errors out. So we need to

control the variance of max1�t�T f"t (s)g. On the one hand, for any group t, "t (s)
p! 0 as Nt !

1, and N2r
t "t (s) converges in distribution to a mixing normal, where the mixing depends on the
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common shocks Ct (Andrews, 2005; Souza-Rodrigues, 2013). But for any �xed Nt�s, the variance

of max1�t�T
�
N2r
t "t (s)

	
increases as T ! 1. The contribution of "t (s) to the variance of bhs

depends therefore on how fast T ! 1 compared to Nmin;T ! 1. From the proof of Proposition 4

it is clear that we need KT to satisfy the restriction (23) to control the variance of the errors. Note

that consistency is achieved even if T
N2r
min;T

! 1, provided K2
T =T ! 0 as (T;Nmin;T ) ! 1. I.e.,

even if there are many more groups T than individuals in each group Nt.

4.2.2 Rate of Convergence

Next we obtain the rate of convergence for bhs. Following the arguments in Chen and Pouzo (2009,
2012), we derive the rate under a weak norm �rst, k�k, and then derive the rate for the stronger

norm. To obtain explicit rates in terms of the number of observations, we restrict the parameter

space to be in a Hilbert space, H �W�
2 (X ; !). We take the strong norm to be the L2 (fX) norm,

k�kL2(fX), and we restrict the sieves space accordingly: assume it is a tensor product basis of the

L2 (fX) space. Note that wavelets form an appropriate basis for L2 (fX).

With an appropriate basis for the L2 (fX) space it is possible to link the weak and the strong

norms and obtain explicit rates of convergence in terms of the number of groups and the number

of individuals within each group. The term that links both norms is the function ' (.) de�ned

in Condition 19(ii) in Appendix A.2. The functional form of ' depends upon whether we have a

mildly or a severely ill-posed problem.

De�ne

rNT = max

(
KT

T
;
K2
T

T
min

(
T

N2r
min;T

; 1

))
; and

�2NT = max

�
rNT ;

JT
T
; b2m;JT

�
:

Inspecting the proofs of the Proposition 4 above, and both Chen and Pouzo (2012)�s Corollary

5.1 and Proposition 6.2, it is clear that the only di¤erence between our case and theirs is that our

term �NT includes the extra rNT because of the �rst step estimator. But other than that, Chen

and Pouzo�s (2012) results are directly applicable. For this reason we brie�y state the additional

conditions required to obtain the result in Appendix A.2 and present the rate of convergence in the

Proposition 5 below without proof.

The cases to consider depend on whether we have: (a) a mildly or severely ill-posed problem

and (b) which term dominates rNT .
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Proposition 5 Let the conditions stated in Proposition 4 (with Conditions 3 and 5 replaced by Con-

dition 18 in Appendix A.2 where appropriate), and Conditions 18-19 in Appendix A.2 hold. Let '(�)

be an increasing function de�ned in Condition 19(ii) (in Appendix A.2). If max
n
rNT ;

JT
T ; b

2
m;JT

; �T

o
=

rNT , then 


bhs(u)� h0s(u)



L2(fX)

= Op

0@K��=dx
T +

s
rNT

'
�
K
�2=dx
T

�
1A :

1. Mildly ill-posed problem: let '(�) = � & , for some & � 0.

(a) "Large-N" Case: If
�

T
N2r
min;T

�
! 0 as (T;Nmin;T )!1, then


bhs(u)� h0s(u)




L2(fX)
= Op

�
T
� �
2(a+&)+dx

�
;

provided KT � T
dx

2(a+&)+dx and 
T

N2r
min;T

!h
T

dx
2(a+&)+dx

i
! c <1

as (T;Nmin;T )!1, for some c > 0.

(b) "Large-T" Case: If
�

T
N2r
min;T

�
! c > 0 as (T;Nmin;T )!1, then


bhs(u)� h0s(u)




L2(fX)
= Op

�
T
� �
2(a+&)+2dx

�
:

provided KT � T
dx

2(a+&)+2dx .

2. Severely ill-posed problem: let '(�) = exp
�
���&=2

�
, for some & > 0.

(a) "Large-N" Case: If
�

T
N2r
min;T

�
! 0 as (T;Nmin;T )!1, then


bhs(u)� h0s(u)




L2(fX)
= Op

�
[lnT ]�

�
&

�
,

provided KT � [lnT ]
dx
& and  

T

N2r
min;T

!
[lnT ]

dx
& ! c <1

as (T;Nmin;T )!1, for some c > 0.

(b) "Large-T" Case: If
�

T
N2r
min;T

�
! c > 0 as (T;Nmin;T )!1 then


bhs(u)� h0s(u)




L2(fX)
= Op

�
[lnT ]�

�
&

�
,

provided KT � [lnT ]
dx
& .
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Remark 5 (Mildly ill-posed problem, "Large-N" case). If Pt (s) were known, the rate of

convergence in the mildly ill-posed problem would be



bhs(u)� h0s(u)




L2(fX)
= Op

�
T
� �
2(a+&)+dx

�
,

as showed by Chen and Pouzo (2012). In the present case however the rate depends on how fast

Nmin;T !1 compared to T !1. In the "Large-N"case, we have
�

T
N2r
min;T

�
! 0 , as (T;Nmin;T )!

1. Because the number of individuals in each group is much larger than the number of groups, the

�rst step does not a¤ect the convergence rate. The resulting rate is the same rate we would obtain

if we observed Pt (s).11

Remark 6 (Mildly ill-posed problem, "Large-T" case). When the number of individuals

in each group is smaller (or not much larger) than the number of groups, the rate of convergence

is slower compared to the "Large-N" case:



bhs(u)� h0s(u)




L2(fX)
= Op

�
T
� �
2(a+&)+2dx

�
, instead of


bhs(u)� h0s(u)




L2(fX)
= Op

�
T
� �
2(a+&)+dx

�
. We de�ne the "Large-T" case when

�
T

N2r
min;T

�
! c > 0

as (T;Nmin;T ) ! 1. If r = 1=2 (in case Sit is discrete), we can have T ' cNmin;T either for

0 < c < 1 (T smaller than Nmin;T ) or for c > 1 (T is larger than Nmin;T ).

The variance of the errors max1�t�T
n
Pt (s)� bPt (s)o in the "Large-T" case does not die out

as fast as in the "Large-N" case. To control that variance we need therefore to choose KT that

increases slower than in the previous case. So, by taking KT � T
dx

2(a+&)+2dx . T
dx

2(a+&)+dx , we control

the variance of bhs and obtain the rate Op �T� �
2(a+&)+2dx

�
. The rate is almost the same as the

optimal rate, except for the extra factor 2 multiplying dx, which slows down the rate of convergence

compared to the optimal rate.12

Remark 7 (Severely ill-posed problem). For the severely ill-posed case, the rate of convergence

is su¢ ciently slow even if we observed Pt (s). As a result it is not a¤ected by the �rst step estimator

regardless how fast Nmin;T !1 compared to T !1.13

Remark 8 Despite the fact h0s(�; u) is strictly decreasing in u by Assumption 1, bhs(�; u) is not
11Note that if

�
T

N2r
min;T

�
! 0, then rNT =

KT
T
max

�
1;KT

T
N2r
min;T

�
, for large (KT ; T;Nmin;T ). So, if we take KT

such that KT
T

N2r
min;T

! c < 1, then rNT = KT
T
c, with c � 1. The choice of KT that balances bias and variance

satis�es K�2�=dx
T '

�
K
�2=dx
T

�
� rNT . In the mildly ill-posed problem, KT � T

dx
2(a+&)+dx balances bias and variance,

provided
�

T
N2r
min;T

��
T

dx
2(a+&)+dx

�
! c <1.

12 If
�

T
N2r
min;T

�
! c > 0, then rNT = KT

T
max

�
1;KT c

	
, for c � 1, for large (T;Nmin;T ). Eventually KT c > 1,

implying rNT =
K2
T
T
c. The choice of KT that balances bias and variance for the mildly ill-posed problem is then

KT � T
dx

2(a+&)+2dx .
13The arguments for obtaining the KT that balances bias and variance for the severely ill-posed problem are the

same as the arguments presented before for the midly ill-posed problems.
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guaranteed to be strictly decreasing. One may need to make adjustments in the spirit of Cher-

nozhukov, Fernandez-Val and Galichon (2010) to guarantee the monotonicity of bhs(�; u) in u.
We conclude that the preliminary estimator bPt (s) may or may not a¤ect the rate of convergence

of the second step estimator. It depends upon (a) whether rNT dominates the term �NT ; (b)

whether we have a mildly ill-posed or a severely ill-posed problem; and (c) the rate at which

(T;Nmin;T )!1.

5 Monte Carlo Simulation

[TO BE FINISHED]

We report a small Monte Carlo (MC) study for the model:

Yit = 1 [Y �it � 0]

Y �it = X
(1)
t + g

�
Sit; X

(2)
t ; Ut (Sit) ; "it

�
: (24)

where

g (:) = �+ �Sit + 
1X
(2)
t + 
2X

(2)
t "it +�(Ut (Sit)) + �it;

where � is the cumulative distribution function of the standard normal. Let (Sit; "it; �it) � N (0; I),

with I the identity matrix; and let the special regressor be X(1)
t � N (0; 1). The endogenous group-

level variable is given by

X
(2)
t = �Zt + V0t

where � measures the strength of the instrument Zt, and V0t is correlated with the group-level

unobservable Ut (:). Because Sit is continuously distributed, we let Ut (:) 2 J (S) � L2 (S), and

take a basis
�
 j
	1
j=1

so that Ut (S) =
1P
j=1

Vjt j (S). In practice we take
�
 j
	J
j=1

to be a J = 4

�nite-order polynomial. The combined vector of V0t and the coe¢ cients of Ut (:) has a joint normal

distribution: (V0; V1; :::; VJ) � N (0;
), with a non-diagonal variance-covariance matrix 
.

Because the model is the binary choice model, we take ey = 0, and so D�1 (ey) = 0. The object
of interest is14

Pr
�
Y �it � y j Sit = s;X

(1)
t = x(1); X

(2)
t = x(2); Ut (s) = u

�
= hs

�
x(1) � y; x(2); u

�
:

14As a matter of fact,

Pr (Y �
it � y j Sit = s;Xt = x;Ut (s) = u)

=

Z
1

�
x(1) + ��

�
1

�

h
�+ �s+ 
1x

(2) + 
2x
(2)"it +�(u) + �it

i�
� y

�
dF ("it; �it) :

This conditional probability is a smooth function of
�
s; x(1); x(2); u

�
.
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For the �rst step, we estimate Pt (s) for each group t using the standard kernel regression and

the "leave-one-out" cross-validation method to select the bandwidth.

For the second step, we use the shape-preserving sieves HKT
... The moment funtion is approx-

imated by cubic splines; the penalization MT (h) is...; and the tuning parameters are (KT ; JT ; �T ).

We run 500 Monte Carlo repetitions for each (N;T ) ranging from (250; 500) to (1500; 1000).

Table XX shows the integrated square bias (I-BIAS2), the integrated variance (I-VAR), and the

integrated mean square error (I-MSE). The results are...

6 Empirical Application

[TO BE FINISHED]

As discussed in Example 2, the impact of hospital volumes of surgical procedures on individual

mortality rates is a question of public interest. Numerous studies have documented an inverse

relationship between hospital volumes and mortality rates after surgery. But the evidence is weak

for most operations [Birkmeyer et al. (2002), and Finks, Osborne and Birkmeyer (2011)]. Given

the evidence for some selected operations, there has been a considerable interest in the United

States since the early 2000s in concentrating the procedures in high-volume hospitals. Indeed, the

Leapfrog Group, a large coalition of private and public purchasers of health insurance, has been

encouraging volume-based referral in the last decade. The objective is to reduce the number of

preventable deaths in surgical procedures performed by hospitals with inadequate experience (i.e.,

with low volume of operations). In the presence of economies of scale or learning, concentrating

operations may be welfare increasing.

We collected data from several sources. The Medicare Provider Analysis and Review (MED-

PAR) provided the Limited Data Set (LDS) Denominator �les and the LDS Inpatient Standard

Analytic �les. The LDS Denominator �les contain the characteristics of the patients, including the

date of death after the surgery (if ocurred before hospital discharged); the LDS Inpatient Standard

Analytic �les contain information on the date of the surgeries and the type of surgery (from the

International Classi�cation of Diseases Code �the ICD-9 code). These data were combined with

the State Inpatient Database (SID), which contains hospitals characteristics, including the volumes

of operations per hospital per surgery and per year. Because the SID does not provide data for all

states and years, we selected the years from XXXX to XXXX for the states listed in the Appendix

XX.15 To make the results comparable to Birkmeyer et al. (2002), we selected the cardiovascular

15We linked the data sets using the National Provider Identi�er (NPI) and the Medicare Provider Number (that
has been renamed the CMS Certi�cation Number �CCN) in the LDS �les and the American Health Association
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and cancer resection surgeries. We limited the data to patients who were over 65 years of age and

under 99 years of age.

The model we take to the data is

Yit = D (Y �it)

Y �it = X
(1)
t + g

�
Sit; X

(2)
t ; Ut (Sit) ; "it

�
: (25)

where i is the index for patients, and t, for hospitals. The latent Y �it represents a continuous measure

of actual health status; and the observable outcome Yit is the binary indicator that equals 1 if the

patient died before hospital discharged or within 30 days after the surgical procedure, and equals 0

otherwise. The vector Sit includes patients�gender (male/female) and age group (65 to 74, 75 to 84,

and 85 to 99 years). The vector of hospital characteristics, Xt, includes the size of the hospital, say,

the number of beds (X(1)
t ) and the volume of operations (X(2)

t ). The unobserved hospital quality,

Ut (:) is indexed by Sit because an unobserved hospital characteristic that is helpful for patients

with one Sit may be harmful to other patients. Because hospitals with high volumes of surgeries are

likely those with high unmeasured quality, we make use of instrumental variables. The IV in this

application is the number of hospital per-capita in the region. The number of hospital per-capita

should a¤ect the level of local competition, and so a¤ect the equilibrium volumes of surgeries, but

should be excluded from the individual mortality equation.

We estimate the conditional probability of survival Pr (Yit = 0jSit; Xt; Ut (Sit)). From Section

3, we know that

Pr (Yit = 0 j Sit = s;Xt = x;Ut (s) = u)

= Pr
�
Y �it � D�1 (0) j Sit = s;Xt = x;Ut (s) = u

�
= hs

�
x(1); x(2); u

�
:

because we must take ey = 0 when the endogenous variable is binary. Next, discuss the speci�c

choices for sieves spaces and penalization.

Results. Compare (a) logit; (b) logit with IV; (c) nonparametric model. The results are...

7 Conclusion

This paper develops a nonparametric estimator for the generalized regression model proposed by

Berry and Haile (2009) in which each individual is associated with a group and each group is

(AHA) hospital identi�er in the SID. The AHA database provides all hospital identi�ers (NPI, CCN and AHA ID)
to allow the merger of the LDS �les with the SID.
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subject to observable and unobservable shocks. The motivation for this model is to estimate the ef-

fects of group-level observables on individual outcomes when group-level observables correlate with

group-level unobservables. The group-level unobservables are allowed to be indexed by individual

characteristics, which allows for more general group e¤ects than existing approaches. In the bi-

nary choice demand example, indexing this unobservable might capture how men and women rank

di¤erently the unobserved quality of the good. Their ranks could be completely di¤erent and inde-

pendent of each other, a possibility that is not allowed if we restrict the group-level unobservables

to be a scalar random variable. The same reasoning applies in case the individual characteristics

are continuous, such as income, for example.

We propose a two-step estimator in which the �rst step runs a nonparametric regression of

individual outcomes on individual observables within each group. It is a nonparametric regression

in the presence of common shocks. The second step �xes the individual characteristics and runs

a nonparametric quantile instrumental variable regression across groups of the predicted outcome

obtained in the �rst step on group-level variables. It separates the e¤ects of group-level observables

from unobservables. The second step modi�es the penalized sieve minimum distance estimator

(PSMD) developed by Chen and Pouzo (2009, 2012) to take into account the preliminary esti-

mator from the �rst step. This paper establishes su¢ cient conditions to obtain consistency and

convergence rate of the estimator. The rate of convergence depends on the rates at which both the

number of groups and the number of observations within each group go to in�nity.

We plan to investigate the properties of the asymptotic distribution of the two-step estimator

in the future.
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A Appendix

The Appendix is divided as follows. First we present the proofs for the results of both the �rst

and the second steps of the estimator (Appendix A.1 and A.2, respectively). Then we describe the

probabilistic framework, based on Andrews (2005), that justi�es the approach taken in this paper

(Appendix A.3).

A.1 First Step - Within Groups

In this subsection we present the results for the �rst step estimator. We consider two cases: Sit is

discrete and Sit is continuous.

A.1.1 Discrete Case

Following the main text, suppose Sit can take �nitely many values f0; 1; ::; Lg. De�ne for l = 1; ::; L,

Slit =

�
0 if Sit 6= l

1 if Sit = l

and de�ne Pr
�
Yit � ey j S1it; :::; SLit ; Ct� by

Pr
�
Yit � ey j S1it; :::; SLit ; Ct� = �0 (Ct) + �1 (Ct)� S1it + :::+ �L (Ct)� SLit :

As a result, we have that

Pr (Yit � ey j Sit = 0; Ct) = �0 (Ct)

Pr (Yit � ey j Sit = l; Ct) = �0 (Ct) + �l (Ct) ;

for l = 1; ::; L. For each group t, we run a linear regression of 1 fYit � eyg on S1it; :::; SLit and take the
estimated prediction of 1 fYit � eyg given Sit = s as our estimator bPt (s), i.e., bPt (s) = b�0 + b�s.

In order to apply the asymptotic results in Andrews (2005), we need to guarantee his As-

sumptions 1-3. Assumption 1 is obtained directly from Condition 1 in the main text. The other

assumptions (about existence of moments) are satis�ed � except for Assumption 2(d) �because

we are regressing a binary variable 1 fYit � eyg on other binary variables S1it; :::; SLit . To obtain his
Assumption 2(d), de�ne the vector Sit =

�
S1it; :::; S

L
it

�0
and impose the following condition:
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Condition 9 E
h
SitS

0
it j Ct

i
� E

�
Sitj Ct

�
E
�
Sit j Ct

�0
> 0 almost surely.

Condition 9 implies Assumption 2(d) in Andrews (2005) directly.

Next, de�ne b� = �b�0; :::; b�L� and � (Ct) = (�0 (Ct) ; :::; �L (Ct)). Theorem 4(a) in Andrews

(2005) shows that, under his Assumptions 1-3,

p
Nt

�b� � � (Ct)� d! V
1=2
C �N (0; I) : (26)

where I is the identity matrix and

VC = B�1C 
CB
�1
C (27)

where

BC = E

��
Sit � E

�
Sit j Ct

�� �
Sit � E

h
S
0
it j Ct

i�0
j Ct

�
;


C = E
�
�it�

0
it j Ct

�
and

�it =
�
Sit � E

�
Sit j Ct

��
�it

�E
��
Sit � E

�
Sit j Ct

��
�it j Ct

�
�
�
Sit � E

�
Sit j Ct

��
E [�it j Ct] ;

�it = 1 fYit � eyg � Pr �Yit � ey j S1it; :::; SLit ; Ct� :
Note that �it is the error in the linear model, and so Pr

�
�it j S1it; :::; SLit ; Ct

�
= 0. Next we turn

to the proof of Proposition 1 in the main text.

Proof of Proposition 1. Condition 1 in the main text and Condition 9 imply the asymptotic

distribution in (26) by applying Theorem 4(a) in Andrews (2005). From (26), it is clear that, for

su¢ ciently large Nt,

VC = V ar
�p

Nt

�b� � � (Ct)� j Ct�
= Nt � V ar

�b�j Ct� :
and that VC is an almost surely �nite matrix.

To obtain

E

���� bPt(s)� Pt (s; Ct)���2 j Ct� = et (s; Ct)�N�1
t ; (28)
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where et (s; Ct) is a � (Ct)-measurable random variable that is almost surely �nite, �rst note that,

for any s = 1; ::; L,

E

���� bPt (s)� Pt (s; Ct)���2 j Ct� = V ar
� bPt(s)j Ct�

= V ar
�b�0 + b�sj Ct� ;

because bPt (s) is an unbiased estimator of Pt (s; Ct). So,
E

���� bPt (s)� Pt (s; Ct)���2 j Ct�
= V ar

�b�0j Ct�+ V ar �b�sj Ct�+ 2Cov �b�0; b�sj Ct�
= [VC (1; 1) + VC (s; s) + 2VC (1; s)]�

1

Nt

where VC (s; l) corresponds to the (s; l) element of the conditional covariance matrix VC . The result

follows by taking

et (0; Ct) = VC (1; 1) ; and

et (s; Ct) = VC (1; 1) + VC (s; s) + 2VC (1; s) ; (29)

for any s = 1; ::; L.

A.1.2 Continuous Case

In this subsection we employ the results of Souza-Rodrigues (2013) to show Proposition 2 in the

main text. First, select a group t and let bPt (s) be the Nadaraya-Watson kernel regression estimator
bPt (s) =

PNt
i=11 fYit � eygK �Sit�sb

�
PNt

i=1K
�
Sit�s
b

� (30)

where K(�) is the kernel function, b is the bandwidth and Nt is the number of observations within

group t. We want to show that bPt (s) converges in probability (with rate) to the random limit

Pt (s; Ct) � Pr (Yit � eyjSit = s; Ct).16

We start by imposing existence of conditional density given the common shock. Then, we adapt

the standard conditions used in the kernel literature to the present case. They are similar to the

usual conditions, but they must hold for Qt-almost all c 2 C.
16Following the notation presented in the Appendix A.3, the argument here holds for a given selected group � 2 T .

In case the groups are selected randomly, then we put the argument conditional on the event f� t (!) = �g, for any
t � 1.

36



Condition 10 There exists a conditional density of (Y �it ; Sit) given Ct, denoted by ft (y
�; sjc) where

y� 2 Y�, s 2 S and c 2 C.

Next we specify the restrictions on the kernel function and the bandwidth:

Condition 11 Let K be the class of all Borel measurable nonnegative bounded real-valued functions

K( ) such that (i)
R
K( )d = 1; (ii) jK( )j k kk ! 0 as k k ! 1; (iii)

R
K2( )d <1; (iv)

sup jK( )j <1; (v)
R
 2K( )d <1 and (vi)

R
 K( )d = 0.

Condition 12 (i) b! 0 as Nt !1 and (ii) Ntb!1 as Nt !1, for all t � 1.

As usual, we need restrictions on the density of the regressors. In the present case, this translates

into restrictions on the conditional density ft (sjc).

Condition 13 For Qt-almost all c 2 C, (i) the point s is in the interior of the support of S

conditional on the event fCt = cg and (ii) ft (sjc) 2 [�;1), for some �nite � > 0.

Condition 14 For Qt-almost all c 2 C, the conditional density ft (sjc) is continuous at any s.

Condition 15 For Qt-almost all c 2 C, (i) ft (sjc) is twice continuously di¤erentiable with respect

to s in some neighborhood of s and (ii) the second-order derivatives of ft (sjc) with respect to s are

bounded in this neighborhood.

Condition 1 in the main text and Conditions 10-14 are su¢ cient to guarantee that the Nadaraya-

Watson kernel density estimator

bft (s) = 1

Ntb

PNt
i=1K

�
Sit � s
b

�
(31)

converges in probability to the random object ft (sjCt) as Nt !1. Conditions 13-15 are important

to obtain its rate of convergence.

To obtain consistency with rate of bPt (s) to Pt (s; Ct) we impose the additional restriction:
Condition 16 (i) Ut (�) is twice continuously di¤erentiable, with bounded second derivatives, in

some neighborhood of s and (ii) the conditional density of Y �it given (Sit; Xt; Ut (Sit)), denoted by

ft (y
�js; x; u (s)), is twice continuously di¤erentiable, with bounded second derivative, with respect

to (s; u (�)), for almost all (y�; s; x; u (�)).
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Condition 16 can be used to apply (Qt-almost sure) Taylor expansions as is usually done in the

literature. We need Pt (s; c) to be twice continuously di¤erentiable with respect to s, for Qt-almost

all c. Because

Pt (s; c) =

Z D�1(ey)
�1

f (y�js; c) dy�

=

Z D�1(ey)
�1

ft (y
�js; x; u (s)) dy�; (32)

we need di¤erentiability of ft (y�js; x; u (s)) with respect to (s; u (�)) as well as di¤erentiability of

u (�) with respect to s.17

Next, we prove Proposition 2 in the main text.

Proof of Proposition 2. The result follows directly from Proposition 4 in Souza-Rodrigues

(2013). Here we present explicitly the quantities involved in the result. First, note that the

conditional mean square error is given by

MSE
� bPt (s) j Ct� = hE � bPt (s) j Ct�� Pt (s; Ct)i2 + V ar � bPt (s) j Ct�

From Lemma 4 in Souza-Rodrigues (2013), the bias term is given by

E
� bPt (s) j Ct�� Pt (s; Ct) =

b2

2

�Z
 2K( )d 

�
�t (s; Ct)

+Op

�
1

Ntb

�
+ op(b

2)

where the function �t (s; c) is de�ned to be

�t (s; c) =
�
ft (sjc)O2sPt (s; c) + 2 [OsPt (s; c)] [Osft (sjc)]

�
and Oas denotes the a-th partial derivative with respect to s.

The variance term is

V ar
� bPt (s) j Ct� = 1

Ntbds
�2t (s; Ct)

ft (sjCt)

�Z
K2( )d 

�
+ op

�
1

Ntbds

�
where �2t (s; c) � V ar [1 fYit � eyg j Sit = s; Ct = c]. The expressions for both the bias and variance

come from a (Qt-almost surely) Taylor expansion argument.

Note that (i) the term �t (s; c) is �nite for Qt-almost all c 2 C, by Conditions 15 and 16; (ii)

both
�R
 2K( )d 

�
and

�R
K2( )d 

�
are �nite by Condition 11; and (iii) ft (sjc) � � > 0; for

17Note that to obtain consistency of the kernel density bft (s) to the random object ft (s j Ct), we need assumptions
on the conditional density ft (s j c) = ft (s j x; u (�) ; z). In addition, to obtain consistency of the kernel regres-
sion bPt (s) to the Kolmogorov conditional expectation Pt (s; Ct) we need assumptions on the conditional density
ft (y

� j s; x; u (s)).
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Qt-almost all c 2 C, by Condition 13. Therefore, we can rewrite the bias and variance terms as

E
� bPt (s) j Ct�� Pt (s; Ct) = b2

2
�t (s; Ct) +Op

�
1

Ntb

�
+ op(b

2)

and

V ar
� bPt (s) j Ct� = 1

Ntbds
�t (s; Ct) + op

�
1

Ntbds

�
where the random variables �t (s; Ct) and �t (s; Ct) are clearly de�ned from the context and both

are Qt-a.s. �nite. Therefore, the conditional MSE is

MSE
� bPt (s) j Ct� = b4

�
�t (s; Ct)

2

�2
+

1

Ntbds
�t (s; Ct)

+Op

�
1

Ntb

�2
+ op(b

4) + op

�
1

Ntbds

�
: (33)

By choosing the bandwidth b _ N
� 1
4+ds

t , we conclude

MSE
� bPt (s) j Ct� = N

� 4
4+ds

t �
"�

�t (s; Ct)

2

�2
+ �t (s; Ct) +Op (1)

#
: (34)

The result follows by taking

et (s; Ct) =

�
�t (s; Ct)

2

�2
+ �t (s; Ct) +Op (1) : (35)

A.1.3 Uniform Rate

Proof of Proposition 3. We want to show

E

�
max
1�t�T

��� bPt (s)� Pt (s; Ct)���2� � const:min

(
T

N2r
min;t

; 1

)
;

where Nmin;T � min fN1; :::; NT g. The expectation E
�
max1�t�T

��� bPt (s)� Pt (s; Ct)���2� is taken over
the vector n

fYit; SitgNti=1 ; Ct
oT
t=1

where Ct = (Xt; Ut (�) ; Zt). First, note that

E

�
max
1�t�T

��� bPt (s)� Pt (s; Ct)���2�
� T max

1�t�T
E

���� bPt (s)� Pt (s; Ct)���2�
= T max

1�t�T
E

�
E

���� bPt (s)� Pt (s; Ct)���2 jCt��
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where the inequality follows by applying Lemma 2.2.2 in Van de Vaart and Wellner (1996); the

expectation in the second line, E
���� bPt (s)� Pt (s; Ct)���2�, is taken over �fYit; SitgNti=1 ; Ct� because

fYit; Sit; Ct : t � 1g are independent across t; and the equality follows from the Law of Iterated

Expectations. From Propositions 1 and 2, we have that

E

���� bPt (s)� Pt (s; Ct)���2 jCt� = e (s; Ct)�N�2r
t :

where r = 1=2 if Sit is discrete, and r = 2=(4 + ds) if Sit is a ds-vector of continuously distributed

variables. Therefore,

E

�
max
1�t�T

��� bPt (s)� Pt (s; Ct)���2�
� T max

1�t�T
E
�
e (s; Ct)�N�2r

t

�
� T

N2r
min;T

� max
1�t�T

E [e (s; Ct)]

� T

N2r
min;T

� sup
t�1

E [e (s; Ct)]

� const:
T

N2r
min;T

where the last inequality follows from (17), i.e. supt�1E [et (s; Ct)] <1. Because E
h��� bPt (s)� Pt (s; Ct)���i �

1, for any t � T , the result follows.

Remark 9 Note from (35) that su¢ cient for supt�1E [et (s; Ct)] <1 (equation (17) in the main

text), in case Sit is continuous, is to assume for all t � 1 and for Qt-almost all c, (i) ft (sjc) �

K0 and Osft (sjc) � K1; (ii) OsPt (s; c) � B1 and O2sPt (s; c) � B2, for some �nite constants

K0;K1; B1; B2 > 0. Then, given Condition 11, and because �2t (s; c) � 1 and ft (sjc) � � > 0 by

Condition 13, the term supt�1E [et (s; Ct)] <1.

A.2 Second Step - Across Groups

Next we present the results for the second step.

A.2.1 Consistency

To simplify notation, let Pt (s) � Pt (s; Ct). Sometimes we omit both indices s and u from both

hs (�; u) and �u (�) when it is clear enough from the context. Below we will make extensive use of

the Cr-inequality: (a+ b)
r � c (ar + br), where c = 1 if r � 1 and c = 2r�1 if r > 1.
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De�ne the unfeasible PSMD estimator by

m(z; h) = pJT (z)0(P 0P )�
TX
t=1

pJT (Zt)� (Pt (s) ; Xt;h) ;

and the projection of m (z; h) on pJT (z) by

em (z; h) = pJT (z)0(P 0P )�
TX
t=1

pJT (Zt)m (Zt; h) :

Let N (!;F ; k�k) be the covering number of a class of functions F under the norm k�k and

N[] (!;F ; k�k) be the corresponding bracketing number. For j = 1; :::; JT , de�ne the class of func-

tions

Oj = fpj (Zt) � (Pt (s) ; Xt; h) : h 2 HKT
g ;

where the envelope of Oj is de�ned by Fj (Zt) = a jpj (Zt)j, for some �nite a � 1, because

� (Pt (s) ; Xt; h) � 1 for all h 2 HK(T ). Let

�jT =

Z 1

0

r
1 + logN[]

�
!;OjT ; k�kL2(fP;X;Z)

�
d!:

We will need a bound for �T � max1�j�JT �jT . By Remark C.3 in Chen and Pouzo (2012), it

is possible to show that

logN[]

�
!;OjT ; k�kL2(fP;X;Z)

�
� logN

�
!;HKT

; k�kL2(fP;X;Z)
�
;

and,

logN
�
!;HKT

; k�kL2(fP;X;Z)
�

� logN[]

�
!;HKT

; k�kL2(fP;X;Z)
�

� cons:!�dx=�;

where the second inequality above follows from Theorem 1 and Corollaries 3.2 and 4.2 in Nickl and

Pötscher (2007). So, �T � cons., as required by Chen and Pouzo (2012).

Next we turn to the proof of Proposition 4 in the main text.

Proof of Proposition 4. The proof is based on Theorem 3.2 and Proposition 6.1 of Chen

and Pouzo (2012). If Pt(s) was observed in the data, the argument here would follow directly from

their proof of Proposition 6.1, except for the necessary adjustments in the parameter space H, the

sieves space HK , the choice of the weighted sup-norm and the penalization term. The adjustments

are necessary because we handle Xt with support on the real line (large support assumption), while

they assumed X is compact. But the adjustments are straightforward. By inspecting the proofs of
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their Theorem 3.2 and Proposition 6.1, it is clear that we have imposed all the (adjusted) conditions

they assumed, and so, if we had Pt(s), instead of bPt(s) , consistency of bhs(u) under the weighted
sup-norm would follow directly. The presence of bPt(s) changes their result in how the uniform

convergence over h 2 HK of the criterion function to its populational version is obtained (i.e., their

Assumption 3.3). More speci�cally, it is su¢ cient to prove that, for some �nite constants c0; c > 0,

c0E km (Zt; h)k2E +Op
�
�
2
m;T

�
� 1

T

TP
t=1
kbm (Zt; h)k2E � cE km (Zt; h)k2E +Op

�
�
2
m;T

�
(36)

uniformly over HK for some �
2
m;T = o (1).

To obtain the �rst inequality of (36) we use the fact that (a� b)2+ b2 � 1
2a
2. This fact implies

that uniformly over h 2 HK ,

1

T

TP
t=1
kbm (Zt; h)k2E � 1

2

1

T

TP
t=1
kem (Zt; h)k2E � 1

T

TP
t=1
kbm (Zt; h)� em (Zt; h)k2E :

Using (a� b)2 + b2 � 1
2a
2 again

1

T

TP
t=1
kem (Zt; h)k2E � 1

2

1

T

TP
t=1
km (Zt; h)k2E �

1

T

TP
t=1
km (Zt; h)� em (Zt; h)k2E :

By Lemma C.2(ii) of Chen and Pouzo (2012), we have that, uniformly over h 2 HK ,

1

T

TP
t=1
km (Zt; h)k2E � c0E km (Zt; h)k2E �Op

�
JT
T
�T + b

2
mT

�
; (37)

where JT
T �T = o (1). So,

�
JT
T �T + b

2
mT

�
! 0 as T !1.

In addition, by Lemma C.1(ii) of Chen and Pouzo (2012),

sup
h2HK

1

T

TP
t=1
km (Zt; h)� em (Zt; h)k2E = Op

�
JT
T
�T

�
= op (1) : (38)

Therefore, uniformly over h 2 HK ,

1

T

TP
t=1
kbm (Zt; h)k2E � c0E km (Zt; h)k2E �Op

�
JT
T
�T + b

2
mT

�
� 1

T

TP
t=1
kbm (Zt; h)� em (Zt; h)k2E :

Similarly, to obtain the second inequality of (36) we use the fact that (a� b)2 � 2a2 + 2b2. So,

uniformly over h 2 HK ,

1

T

TP
t=1
kbm (Zt; h)k2E � 2 1T TP

t=1
kem (Zt; h)k2E + 2 1T TP

t=1
kbm (Zt; h)� em (Zt; h)k2E :

Using (a� b)2 � 2a2 + 2b2 again

1

T

TP
t=1
kem (Zt; h)k2E � 2 1T TP

t=1
km (Zt; h)k2E + 2

1

T

TP
t=1
km (Zt; h)� em (Zt; h)k2E :
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By Lemmas C.1(ii) and C.2(ii) of Chen and Pouzo (2012), we obtain uniformly over h 2 HK

1

T

TP
t=1
kbm (Zt; h)k2E � cE km (Zt; h)k2E +Op

�
JT
T
�T + b

2
mT

�
+
1

T

TP
t=1
kbm (Zt; h)� em (Zt; h)k2E :

Therefore, to obtain (36), we need to show

sup
h2HK

T�1
TP
t=1
kbm (Zt; h)� em (Zt; h)k2E = Op (rTN ) (39)

for some rTN = o (1) where

bm(z; h)� em (z; h) = pJT (z)0(P 0P )�
TX
t=1

pJT (Zt)
h
�
� bPt (s) ; Xt;h

�
�m (Zt; h)

i
:

De�ne the random element

�t =
�
(Yit; Sit)

Nt
i=1 ; Ct

�
;

where Ct = (Xt; Ut (�) ; Zt). Recall that bPt (s) is a statistic that depends on the sample (Yit; Sit)Nti=1
and that Pt (s; Ct) is measurable with respect to � (Ct). De�ne the residual function di¤erenceb� (�t; h) = h

�
� bPt (s) ; Xt; Zt

�
�m (Zt; h)

i
and the T -vector b�(h) = [b� (�1; h) ; :::;b� (�T ; h)]. Now

notice that

sup
h2HK

T�1
TP
t=1
kbm (Zt; h)� em (Zt; h)k2E

= sup
h2HK

T�1
TP
t=1

Tr
�
pJT (Zt)

0(P 0P )�P 0b�(h)b�(h)0P (P 0P )�pJT (Zt)	
= sup

h2HK

T�1Tr
�b�(h)0P (P 0P )�P 0b�(h)	

� 1

�min (P 0P=T )
� sup
h2HK

1

T 2
Tr
�b�(h)0PP 0b�(h)	

=
1

�min (P 0P=T )
� sup
h2HK

"
JTP
j=1

�
1

T

TP
t=1

pj (Zt)b� (�t; h)�2
#
: (40)

Because (�min (P 0P=T ))
�1 = Op (1), by Condition 7(ii), we can focus on the second term of

(40) to determine rTN in (39). Let M > 0, then, by Markov inequality,

Pr

 
sup
h2HK

"
JTP
j=1

�
1

T

TP
t=1

pj (Zt)b� (�t; h)�2
#
> rTNM

!

� 1

rTNM
E�T

"
sup
h2HK

"
JTP
j=1

�
1

T

TP
t=1

pj (Zt)b� (�t; h)�2
##

� 1

rTNM

JT
T

max
1�j�JT

E�T

"
sup
h2HK

�
1p
T

TP
t=1

pj (Zt)b� (�t; h)�2
#

(41)
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where �T = (�1; :::; �T ) and E�T [�] is the expectation taken over �T . Next we centralize the process

for each j = 1; :::; JT and use the inequality (a� b)2 � 2a2 + 2b2 to obtain

E�T

"
sup
h2HK

�
1p
T

TP
t=1

pj (Zt)b� (�t; h)�2
#

� 2E�T

"
sup
h2HK

�
1p
T

TP
t=1

pj (Zt)b� (�t; h)� E�t [pj (Zt)b� (�t; h)]�2
#

+2

"
sup
h2HK

�
1p
T
E�T

�
TP
t=1
[pj (Zt)b� (�t; h)]��2

#
: (42)

It is su¢ cient therefore to bound (42). We start with the second term of the RHS of (42).

(I) Bound The Second Term in (42).

Denote bAT (s) = maxt�T ��� bPt (s)� Pt (s)���. Note that
�
� bPt (s) ; Xt;h

�
= 1

n bPt (s) � h (Xt; u)
o

= 1
n
Pt (s)� h (Xt; u) � Pt (s)� bPt (s)o

� 1

�
Pt (s)� h (Xt; u) � max

t�T

��� bPt (s)� Pt (s)���� : (43)

Then

E�T

�
TP
t=1

pj (Zt)b� (�t; h)� = E�T

�
TP
t=1

pj (Zt)
h
�
� bPt (s) ; Xt;h

�
�m (Zt; h)

i�
� E�T

�
TP
t=1

pj (Zt)
�
1
n
Pt (s)� h (Xt; u) � bAT (s)o�m (Zt; h)�� :

Moreover, using the law of iterated expectations twice,

E�T

�
TP
t=1

pj (Zt)
�
1
n
Pt (s)� h (Xt; u) � bAT (s)o�m (Zt; h)��

= E�T

�
TP
t=1

pj (Zt)
�
E�T

�
1
n
Pt (s) � h (Xt; u) + bAT (s)o jZT��m (Zt; h)��

= E�T

�
TP
t=1

pj (Zt)
�
E�T

�
FPs=X;Z

�
h (Xt; u) + bAT (s)jXt; Zt

�
jZT

�
�m (Zt; h)

��
;

where FPsjX;Z is the conditional distribution function of Pt (s) across t, ZT = (Z1; :::; ZT ) and
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E�T
�
�jZT

�
is the conditional expectation of �T given ZT . By the mean-value theorem,

E�T
�
FPs=X;Z

�
h (Xt; u) + bAT (s)jXt; Zt

�
jZT

�
= E�T

�
FPs=X;Z (h (Xt; u) jXt; Zt) jZT

�
+E�T

��Z 1

0
fPs=X;Z

�
h (Xt; u) + t bAT (s)jXt; Zt

�
dt

�
�
h bAT (s)i jZT�

� m (Zt; h) + (1� u) + E�T
 
sup
t2[0;1]

fPs=X;Z

�
h (Xt; u) + t bAT (s)jXt; Zt

�
�
h bAT (s)i jZT!

� m (Zt; h) + 1 +KE�T
� bAT (s) jZT�

where the �rst inequality uses the de�nition of m (Zt; h) and the fact that Zt is i.i.d.; and the third

inequality uses Condition 8(i). And so,

E�T

�
TP
t=1

pj (Zt)
�
E�T

�
FPs=X;Z

�
h (Xt; u) + bAT (s)jXt; Zt

�
jZT

�
�m (Zt; h)

��
� KE�T

�
TP
t=1

pj (Zt)
�
1 + E�T

� bAT (s) jZT��� :
Therefore, the second term on the RHS of the inequality (42) is such that

sup
h2HK

�
1p
T
E�T

�
TP
t=1
[pj (Zt)b� (�t; h)]��2

� K2

�
1p
T
E�T

�
TP
t=1

pj (Zt)
�
1 + E�T

� bAT (s) jZT����2
� const:

1

T
E�T

�
TP
t=1
(pj (Zt))

2

�
+const:

1

T
E�T

�
TP
t=1
(pj (Zt))

2E�T

�� bAT (s)�2 jZT��
where the second inequality uses both Jensen�s inequality and (a+ b)2 � 2a2 + 2b2.

By Conditions 2(i) and 7(ii),

1

T
E�T

�
TP
t=1
(pj (Zt))

2

�
� const <1:

Remember that �T � supz2Z


pJT (z)



E
. Then

1

T
E�T

�
TP
t=1
(pj (Zt))

2E�T

�� bAT (s)�2 jZT��
� 1

T
E�T

�
T

�
sup
z2Z



pJT (z)

2
E

�
� E�T

�� bAT (s)�2 jZT��
� �2T � E�T

�� bAT (s)�2�
� �2T � E�T

�
max
t�T

��� bPt (s)� Pt (s)���2�
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where the second inequality uses the law of iterated expectations. In short, we obtained

sup
h2HK

�
1p
T
E�T

�
TP
t=1
[pj (Zt)b� (�t; h)]��2

� const

�
1 + �2T � E�T

�
max
t�T

��� bPt (s)� Pt (s)���2�� : (44)

(II) Bound The First Term in (42).

Next, we bound the term

E�T

"
sup
h2HK

�
1p
T

TP
t=1

pj (Zt)b� (�t; h)� E�t [pj (Zt)b� (�t; h)]�2
#
:

To simplify notation, de�ne "j (�t; h) = pj (Zt)b� (�t; h) and
"j (�t; h) = "j (�t; h)� E�t ["j (�t; h)] :

Note that the envelope of "j (�t; h) is the same as the envelope of Oj , Fj (Zt). We have that

E�T

"
sup
h2HK

�
1p
T

TP
t=1

"j (�t; h)

�2#

� E�T

24 sup
h2HK

1p
T

TP
t=1

"j (�t; h)

!235
�

 
E�T

"
sup
h2HK

���� 1pT TP
t=1

"j (�t; h)

����
#
+

r
E�T

h
Fj (Zt)

2
i!2

� 2

 
E�T

"
sup
h2HK

���� 1pT TP
t=1

"j (�t; h)

����
#!2

+ 2E�T
h
Fj (Zt)

2
i
; (45)

where the second inequality follows from Theorem 2.14.5 in Van de Vaart and Wellner (1996); and

the third inequality from the Cr-inequality. We know that E�T
h
Fj (Zt)

2
i
� const by Condition

7(ii). So we need to bound the �rst term of the RHS of (45).

To simplify notation, let Fj (Zt) = Fj . De�ne the norm k:k2;T to be

kgk2;T �
�
1

T

TP
t=1

E�t [g (�t)]
2

�1=2
;

for some squared-integrable g, and

EjT = f"j (�t; h) : h 2 HKg

=
n
pj (Zt)

h
�
� bPt (s) ; Xt;h

�
�m (Zt; h)

i
: h 2 HK

o
:
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By Theorem 6 and Corollary 7 in Pollard (2002), the empirical process for independent (but

not identically distributed) �t is such that

E�T

"
sup
h2HK

���� 1pT TP
t=1

"j (�t; h)

����
#

� cE
�
F 2j
�
�

0B@Z 1

0

vuuutlog 2N[]
0@E

h
F 2j

i
2

!; EjT ; k�k2;T

1Ad!
1CA

where c is some �nite constant.18

We need to bound the bracketing number of EjT under the norm k�k2;T . From Lemma 1 below,

we have that Z 1

0

vuuutlog 2N[]
0@E

h
F 2j

i
2

!; EjT ; k�k2;T

1Ad! � const:

which implies

E�T

"
sup
h2HK

�
1p
T

TP
t=1

"j (�t; h)

�2#

.
�
E
�
F 2j
��2 �

0B@Z 1

0

vuuutlog 2N[]
0@E

h
F 2j

i
2

!; EjT ; k�k2;T

1Ad!
1CA
2

+ 2E
�
F 2j
�

� const: (46)

(III) Collect Results from (I) and (II).

We collect the results to bound the inequality (41). From inequalities (42), (44) and (46), we

obtain

Pr

 
sup
h2HK

"
JTP
j=1

�
1

T

TP
t=1

pj (Zt)b� (�t; h)�2
#
> rTNM

!

� 1

rTNM

JT
T

max
1�j�JT

E�T

"
sup
h2HK

�
1p
T

TP
t=1

pj (Zt)b� (�t; h)�2
#

. 1

rTNM

JT
T

max
1�j�JT

��
1 + �2T � E�T

�
max
t�T

��� bPt (s)� Pt (s)���2��+ const:�
. 1

rTNM

JT
T

"
1 + �2T min

(
T

N2r
min;T

; 1

)#
;

18The results in Pollard (2002) follow by replacing his norm kgk2 =

�
TP
t=1

E�t [g (�t)]
2

�1=2
by the norm

kgk2;T �
�
1
T

TP
t=1

E�t [g (�t)]
2

�1=2
; and by replacing the inequality supx jg (x)j � � in his Lemma 3 by the inequality

supx jg (x)j � �
p
T .

47



where the last inequality comes from Proposition 3.

If �2T � JT , and KT � JT , then

JT
T

"
1 + �2T min

(
T

N2r
min;T

; 1

)#

.
"
KT

T
+
K2
T

T
min

(
T

N2r
min;T

; 1

)#

and (23) implies that the both terms on the RHS above converge to zero as (T;Nmin;T )!1. We

can take

rTN =

"
KT

T
+
K2
T

T
min

(
T

N2r
min;T

; 1

)#
and rTN ! 0 as (T;Nmin;T )!1 by (23). We obtain therefore

sup
h2HK

1

T

TP
t=1
kbm (Zt; h)� em (Zt; h)k2E = Op (rTN ) = op (1) :

Next, we prove the following Lemma:

Lemma 1 De�ne the norm kgk2;T =
�
1
T

TP
t=1

E�t jg (�t)j
2

�1=2
, and the set of functions

EjT =
�
"j (�; h) : h 2 HK(T )

	
;

where "j (�t; h) = pj (Zt)
h
�
� bPt (s) ; Xt;h

�
�m (Zt; h)

i
. Let the conditions of Proposition 4 hold.

Then Z 1

0

vuuutlog 2N[]
0@E

h
F 2j

i
2

!; EjT ; k�k2;T

1Ad! � const: <1

Proof. We need to bound the bracketing number of EjT under the norm k�k2;T . To do so, we

split the function "j (�t; h) in two parts, pj (Zt) �
� bPt (s) ; Xt;h

�
and pj (Zt)m (Zt; h), and obtain

the bracketing numbers for each class of functions. Then we bound each bracketing number by the

covering number of HK . Finally, we combine them to obtain the desired result.

De�ne

%j =
n
pj (Zt) �

� bPt (s) ; Xt;h
�
: h 2 HK(T )

o
and

Mj =
�
pj (Zt)m (Zt; h) : h 2 HK(T )

	
:
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Then, EjT = %j �Mj and, by Theorem 6 of Andrews (1994),

logN[]

�
!; EjT ; k�k2;T

�
� logN[]

�!
2
; %j ; k�k2;T

�
+ logN[]

�!
2
;Mj ; k�k2;T

�
: (47)

So,

Z 1

0

vuuutlog 2N[]
0@E

h
F 2j

i
2

!; EjT ; k�k2;T

1Ad!
. c0 +

Z 1

0

vuuutlogN[]
0@E

h
F 2j

i
2

!; EjT ; k�k2;T

1Ad!
� c0 +

Z 1

0

vuuutlogN[]
0@E

h
F 2j

i
4

!; %j ; k�k2;T

1Ad!
+

Z 1

0

vuuutlogN[]
0@E

h
F 2j

i
4

!;Mj ; k�k2;T

1Ad!
where the �rst inequality follows from the Cr-inequality and the last inequality, from (47).

(A) Bound the Covering Number for HK .

Recall that khk1;! = supx2X j! (x)h (x)j, with the weight function ! (x) =
�
1 + kxk2E

���=2
,

for some � > 0. De�ne another weighted norm khk1;$ = supx2X j$ (x)h (x)j, with

$ (x) =
�
1 + kxk2E

��(�+�)=2
;

with some � > 0 and � 6= � if H is the weighted Hölder space; and some � > � � dx
2 > 0 if H is

the weighted Sobolev space. Because (i) HK is a bounded subset of H under the weighted norm

(Condition 5), (ii) and E
��
1 + kXtk2E

�2(�+�)�
< 1 (Condition 8(ii)), we can apply Theorem 1

and Corollaries 3.2 and 4.2 in Nickl and Pötscher (2007) [see their equation (3), p.184].19 The

covering number of HK under the norm k�k1;$ is therefore

logN
�
!;HK ; k�k1;$

�
� const:!�

dx
� :

(B) Bound the Bracketing Number for Mj.

19Using Nickl and Pötscher�s (2007) notation, the result here follows by Theorem 1 with (a) p = q =1, r = 1, and

 6= s > 0, if H is the weighted Hölder (Corollary 3.2); and (b) p = 2; q = 1, r = 1, and 
 > s� d=2 > 0, if H is the
weighted Sobolev (Corollary 4.2).
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First note that pj (Zt)m (Zt; h) is k�k2;T -Lipschitz in
�
H; k�k1;$

�
.

��pj (z) �m (z; h)�m �z; h0����
� jpj (z)j

��m (z; h)�m �z; h0���
= jpj (z)j

��FPsjX;Z (h (x) jx; z)� FPsjX;Z �h0 (x) jx; z���
� jpj (z)j

�����Z 1

0
fPs=X;Z

�
h (x) + th0 (x) jXt; Zt

�
dt

������ ��h (x)� h0 (x)��
� Fj (z)�K �

��h (x)� h0 (x)��
� Fj (z)�K �

���� 1

$ (x)

����� 

h� h0

1;$

where the second inequality comes from the mean-value theorem and the third inequality comes

from the de�nition of Fj and from Condition 8(i). So,



pj (Zt) �m (Zt; h)�m �Zt; h0��

2;T
=

�
1

T

TP
t=1

E�t
�
pj (Zt)

�
m (Zt; h)�m

�
Zt; h

0���2�1=2
�

 
1

T

TP
t=1

E�t

�
Fj (Zt)�K �

���� 1

$ (Xt)

����� 

h� h0

1;$

�2!1=2

=

 
K2E�t

"
Fj (Zt)

2

���� 1

$ (Xt)

����2
#
�


h� h0

21;$

!1=2

�
 
K2
�
E�t

h
Fj (Zt)

4
i�1=2

�
�
E�t

��
1 + kXk2E

�2(�+�)��1=2
�


h� h0

21;$

!1=2
� c



h� h0

1;$
;

where the third inequality follows from Cauchy-Schwartz inequality; and the last inequality from

Conditions 7 and 8. By Theorem 2.7.11 in Van de Vaart and Wellner (1996),

logN[]

�
!;Mj ; k�k2;T

�
� logN

� !
2c
;HK ; k�k1;$

�
� const:

� !
2c

�� dx
�

(48)
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Therefore

Z 1

0

vuuutlogN[]
0@E

h
F 2j

i
4

!;Mj ; k�k2;T

1Ad!
�

Z 1

0

vuuutlogN
0@E

h
F 2j

i
8c

!;HK ; k�k1;$

1Ad!
�

Z 1

0
const:

0@E
h
F 2j

i
8c

!

1A�
dx
2�

d!

� const:

(C) Bound the Bracketing Number for %j.

Next, we consider the bracketing number for %j =
n
pj (Zt) �

� bPt (s) ; Xt;h
�
: h 2 HK(T )

o
, where

�
� bPt (s) ; Xt;h

�
= 1

n bPt (s) � h (Xt)
o
.

The argument here follows the argument of Corollary 2.7.3 in Van de Vaart and Wellner (1996).

Let h1; :::; hn be the centers of k�k1;$-balls of radius � that cover HK . I.e., n is the �-covering

number of
�
HK ; k�k1;$

�
. De�ne for l = 1; :::n, the brackets

Al = 1
n bPt (s) � h (Xt)� �

o
Bl = 1

n bPt (s) � h (Xt) + �
o
:

Then [Al; Bl], for l = 1; :::n, are brackets that cover %j . The k�k2;T -size of the brackets is, for

l = 1; :::n,

kAl4Blk2;T

=

�
1

T

TP
t=1

E�t [Al4Bl]
2

�1=2
=

�
1

T

TP
t=1

E�t

h
pj (Zt)

2 1
n
hl (Xt)� � � bPt (s) � hl (Xt) + �

oi�1=2
�

�
1

T

TP
t=1

�
E�t

h
Fj (Zt)

4
i�1=2

�
�
E�t

h
1
n
hl (Xt)� � � bPt (s) � hl (Xt) + �

oi�1=2�1=2
� ac

�
1

T

TP
t=1

�
E�t

h
1
n
hl (Xt)� � � bPt (s) � hl (Xt) + �

oi�1=2�1=2
= ac

�
1

T

TP
t=1

�
E�t

h
E�t

h
1
n
hl (Xt)� � � bPt (s) � hl (Xt) + �

o
jXt; Zt

ii�1=2�1=2
(49)

where 4 denotes the symmetric di¤erence. The �rst inequality follows from Cauchy-Scwartz in-

equality; the second inequality, from Condition 7, taking max1�j�JT E
h
jpj (Zt)j4

i
� c and from
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Fj (Zt) = a jpj (Zt)j, for some �nite a � 1. The last equality, from the law of iterated expectations.

Note that

1
n
hl (Xt)� � � bPt (s) � hl (Xt) + �

o
� 1

n
hl (Xt)� bAT (s)� � � Pt (s) � hl (Xt) + bAT (s) + �o

where bAT (s) = maxt�T ��� bPt (s)� Pt (s)���. Therefore, by the mean-value theorem and Condition 8(i)

E�t

h
1
n
hl (Xt)� � � bPt (s) � hl (Xt) + �

o
jXt; Zt

i
� E�t

h
1
n
hl (Xt)� bAT (s)� � � Pt (s) � hl (Xt) + bAT (s) + �o jXt; Zt

i
= FPsjX;Z

�
hl (Xt) + � + bAT (s) jXt; Zt

�
�FPsjX;Z

�
hl (Xt)� � � bAT (s) jXt; Zt

�
=

�Z 1

0
fPs=X;Z

�
hl (Xt) + t

�
� + bAT (s)� jXt; Zt

�
dt

�
�
h
� + bAT (s)i

+

�Z 1

0
fPs=X;Z

�
hl (Xt)� t

�
� + bAT (s)� jXt; Zt

�
dt

�
�
h
� + bAT (s)i

� 2K
h
� + bAT (s)i :

So, the k�k2;T -size of the bracket is

kAl4Blk2;T

� ac

�
1

T

TP
t=1

�
E�t

h
E�t

h
1
n
hl (Xt)� � � bPt (s) � hl (Xt) + �

o
jXt; Zt

ii�1=2�1=2
� ac

�
1

T

TP
t=1

�
E�t

h
2K� + 2K bAT (s)i�1=2�1=2

� ac

�
(2K�)1=2 +

�
2KE�T

h bAT (s)i�1=2�1=2
� ac (2K)1=4

�
�1=4 +

�
E�T

h bAT (s)i�1=4� ;
where the last two inequalities apply the Cr-inequality.

Collect the constant ac (2K)1=4 into a single c. We conclude that

logN[]

�
c

�
�1=4 +

�
E�T

h bAT (s)i�1=4� ; %j ; k�k2;T� � logN ��;HK ; k�k1;$

�
:

If we take ! = c

�
�1=4 +

�
E�T

h bAT (s)i�1=4�, then
logN[]

�
!; %j ; k�k2;T

�
� logN

 �
!

c
�
�
E�T

h bAT (s)i�1=4�4 ;HK ; k�k1;$

!
:
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Therefore,

Z 1

0

vuuutlogN[]
0@E

h
F 2j

i
4

!; %j ; k�k2;T

1Ad!

�
Z 1

0

vuuuutlogN
0B@
24E

h
F 2j

i
4c

! �
�
E�T

h bAT (s)i�1=4
354 ;HK ; k�k1;$

1CAd!
Next, use a change-in-variables argument. Let

� =

24E
h
F 2j

i
4c

! �
�
E�T

h bAT (s)i�1=4
354

Then20

if ! = 0 =) � = E�T
h bAT (s)i � �0

if ! = 1 =) � =

24E
h
F 2j

i
4c

�
�
E�T

h bAT (s)i�1=4
354 � �1

So,

Z 1

0

vuuuutlogN
0B@
24E

h
F 2j

i
4c

! �
�
E�T

h bAT (s)i�1=4
354 ;HK ; k�k1;$

1CAd!
=

Z �1

�0

r
logN

�
�;HK ; k�k1;$

�24 c

E
h
F 2j

i
�3=4

35 d�
�

24 c

E
h
F 2j

i
35Z �1

�0

q
const:��

dx
�

�
1

�3=4

�
d�

= c

Z �1

�0

��
(2dx+3�)

4� d�

= c

�
�
��2dx
4�

1 � �
��2dx
4�

0

�
20Note that to satisfy the inequality �1 � �0, we need the envelope function Fj to have a su¢ ciently large second

moment. Formally, we need
�

E[F2j ]
8ac(2K)1=4

�4
� E�T

h bAT (s)i. Because E�T
h bAT (s)i � 1, it is su¢ cient to have

E[F2j ]
8ac(2K)1=4

� 1. Remember that Fj (Zt) = a jpj (Zt)j, for some �nite a � 1, and that max1�j�JT E
�
jpj (Zt)j4

�
� c.

Then,
E
�
F 2j
�

8ac (2K)1=4
= a

E
�
pj (Zt)

2�
8c (2K)1=4

:

Even though E
�
pj (Zt)

2� � c, we garantee the inequality �1 � �0 by taking a su¢ ciently large a.
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where c incorporates all constants. Next, use the de�nition of �0 and �1:�
�
��2dx
4�

1 � �
��2dx
4�

0

�

=

24E
h
F 2j

i
4c

�
�
E�T

h bAT (s)i�1=4
35
��2dx
�

�
�
E�T

h bAT (s)i���2dx4�

�

2664
0@E

h
F 2j

i
4c

1A
��2dx
�

+
�
E�T

h bAT (s)i���2dx4�

3775� �E�T h bAT (s)i���2dx4�

� const:

where the �rst inequality uses the Cr-inequality: (a+ b)
r � cr (a

r + br), where cr = 1 if r � 1 and

cr = 2
r�1 if r > 1. We take cr = 1 because 0 <

(��2dx)
� < 1, provided � > 2dx. So,

Z 1

0

vuuutlogN[]
0@E

h
F 2j

i
4

!; %j ; k�k2;T

1Ad! � const:

A.2.2 Rate of Convergence

To obtain the rate of convergence we can concentrate our attention on a shrinking neighborhood

around h0s. Therefore, let Hos = fh 2 H : kh � h0k1;! = op(1), cMT (h) � M0g; and Hosk = fh 2

Hk : kh � �kh0k1;! = op(1), cMT (h) � M0g, where M0 is a positive constant and �kh0 is the

projection of h0 on Hk. From now on, we work within these shrinking sets.

As usual, the rate of convergence is obtained under a weak norm �rst. We take the strong norm

to be the L2 (fX) norm, k�kL2(fX). The weak norm is obtained following the arguments in Chen

and Pouzo (2012). De�ne the pathwise derivative at the direction [h� h0] evaluated at h0:

dm(Z; h0)

dh
[h� h0] �

dm(Z; (1� �)h0 + �h)
d�

j�=0 a:s:Z (50)

and de�ne the weak norm as

kh1 � h2k2 = E

(



dm(Z; h0)dh
[h1 � h2]





2
E

)
: (51)

So, in our case, from (20) and Condition 8, we have the well-de�ned norm

kh1 � h2k2 = E
�
E
�
fPsjX;Z (h0(X;u)jX;Z) [h1(X;u)� h2(X;u)] j Z

�	2
:
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To obtain the rate of convergence under the weak norm, we need it to be continuous with respect

to the populational criterion function E
�
m (Z; h)0m (Z; h)

�
. The next condition is su¢ cient for

that.

Condition 17 Let c0 and c1 be �nite positive constants. For all h 2 Hos and almost all X;Z,

0 < c0 <
fPsjX;Z (h(X;u)jX;Z)
fPsjX;Z (h0(X;u)jX;Z)

� c1 <1:

For any h 2 Hos, de�ne the linear integral operator

Th [g] = E
�
fPsjX;Z (h(X;u)jX;Z) [g] j Z

�
that maps a function g 2 L2

�
RdX ; fX

�
to a function in L2 (Z; fZ). Note that kh1 � h2k2 =

E fTh0 [h1 � h2]g
2. This operator is important to link the weak norm to the strong norm, so we

can move from the rate of convergence under the weak norm to the rate under the strong norm.

This requires that we work on Hilbert spaces.

Condition 18 HK(T ) is a tensor product wavelet closed linear subspace of H � W�
2 (X ; !). Let

dim
�
HK(T )

�
= KT <1.

The space H is a subset of the separable Hilbert space
�
L2
�
RdX ; fX

�
; k�kL2(fX)

�
. Hos is con-

tained in this Hilbert space and we take the sieves spaces HK to be a (Riesz) basis of L2
�
Rdx ; leb

�
.

We use

HK(T ) =

(
h 2W�

2 (X ; !) : h (�) =
KTP
k=1

ak k (�) and 0 � h � 1
)

where f k : k � 1g is a tensor product wavelet basis for L2
�
RdX ; fX

�
. Assume that

Condition 19 (i) If Th0s [g] = 0, then g = 0 for all g+h0s 2 Hos; and (ii) there is a non-negative,

continuous increasing function ' such that

kTh0s [g]k
2
L2(fZ)

�
1P
k=1

'
�
k�2=dx

�
jhg;  kisj

2

for all g 2 Hos \Domain (Th0s).

Condition 19(i) states that the new operator Th0s is one-to-one and, so, preserves the iden-

ti�cation of h0s. Condition 19(ii) states that kTh0s [g]k
2
L2(fZ)

= kgk2 is locally equivalent to
1P
k=1

'
�
k�2=dx

�
jhg;  kisj

2. Remember that kgk2L2(fX) =
1P
k=1

jhg;  kisj
2, by the de�nition of basis
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in Hilbert spaces, so the terms '
�
k�2=dx

�
link the strong and the weak norms. The functional form

of ' depends upon whether we have a mildly or a severely ill-posed problem.

Proof of Proposition 5. From the proof of consistency, we obtained the following result:

sup
h2HK

�
1

T

TP
t=1

� bm(Zt; h)0 bm (Zt; h)�m(Zt; h)0m (Zt; h)�� = Op
�
�2NT

�
(52)

where �2NT = max
n
rNT ;

JT
T ; b

2
mT

o
. Given the conditions imposed, this proposition is proved fol-

lowing the arguments in Chen and Pouzo�s (2012) Corollary 5.1 and Proposition 6.2. The only

di¤erence here from their proof is that our term �NT includes the extra rNT because of the �rst

step estimator. But other than that, the argument is the same.

A.3 Probabilistic Framework

The probabilistic framework justi�es (i) the assumption stating that the conditional distribution

Pr (Yit � y; Sit � s j t) is known for each group t and that the equality Pr (Yit � y; Sit � s j t) =

Pr (Yit � y; Sit � s j � (Ct)) holds (Assumption 2); (ii) the condition stating that the dataset fYit; Sit :

i = 1; :::; Ntg is i.i.d. conditional on common shocks Ct (Condition 1); (iii) the fundamental equation

of this paper - equation (12) in the main text; and (iv) the condition imposing that the unfeasible

sample fPt(s); Xt; ZtgTt=1 is i.i.d. across t (Condition 2).

Let 
� denote some unit in the population that belongs to the group � . Denote the set of all

groups by T , and the set of all units in group � by �� . Let T be a countable set and let �� be an

arbitrary topological space. The set of all population units is given by � = 
�2T �� .

For a population unit 
� 2 �� in group � 2 T , the vector S(
� ; �) 2 S (� RdS ) denotes

the observable individual-speci�c covariates and "(
� ; �) 2 E (� Rd"), the unobservable individual

heterogeneity. Similarly, for a group � 2 T , the vector X(�) 2 X (� RdX ) denotes the observable

group-speci�c covariates and U(�; �), the unobservable "group-e¤ect", which is a function mapping

S into U (� R). Assume U (�; �) 2 J (S), where J (S) denotes the set of functions mapping S to

U , and equip this space with a norm k�kJ so that
�
J (S) ; k�kJ

�
is a metric space.

Let Y (
� ; �) 2 Y (� R) be the outcome of individual 
� in group � , let Y � (
� ; �) 2 Y� (� R)

be the latent response variable and Z (�) 2 Z (� RdZ ) be another group-level observable vector

(the instrumental variables). De�ne the vectors

V (
� ; �) = [Y (
� ; �) ; Y
� (
� ; �) ; S (
� ; �) ; " (
� ; �)] ;

C (�) = [X (�) ; U (�; �) ; Z (�)] , and

W (
� ; �) = [V (
� ; �) ; C (�)] : (53)
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Let (
;F ;P) denote a probability space and ! 2 
. For each unit (
� ; �) 2 ��� T , the vector

W (
� ; �) is a random element de�ned on the probability space (
;F ;P). We assume the support of

W (
� ; �) does not change with (
� ; �) and is denoted byW � V � C, where V = Y � Y��S � E and

C = X � J (S)�Z. We endow W with the (product) Borel sigma-�eld A. Therefore, W (
� ; � ; !)

is an F-measurable function mapping (
;F) into (W;A), i.e.,

W : �� � T �
!W:

We endow C with the product Borel �-�eld, denoted by B, and, so, C (�) maps (W;A) into (C;B).

Denote by Q� the probability distribution (induced by P) of the common shocks C (�) on the space

(C;B).

For each (
� ; �) 2 ��� T , the random W (
� ; �) satis�es the model restriction

Y (
� ; �) = D [Y � (
� ; �)]

Y � (
� ; �) = G [S (
� ; �) ; X (�) ; U (S (
� ; �) ; �) ; " (
� ; �)] (54)

where D(�) is a known weakly increasing function and G(�) is a function de�ned on S � X � U � E .

It is assumed that the probability distribution of " (
� ; �) (induced by P) is independent of the

other elements in W (
� ; �) and does not change with (
� ; �).

Samples are obtained by drawing indices of units f
i� : i � 1g randomly from �� according to

some distribution P�� on �� . Because the groups themselves may be selected randomly we assume

samples of groups are obtained by drawing indices f� t : t � 1g randomly from T according to some

distribution PT on T . The indices f� t : t � 1g and f
i� : i � 1g are de�ned on (
;F ;P) the same

probability space as W (
� ; �). More explicitly, we are assuming � t : 
 ! T , and 
i� : 
 ! �� .

The units selected on � are therefore
�

i� t : i � 1; t � 1

	
, and, as a short cut notation, we let


it = 
i� t(!) (!). The probability measure of 
it is then PT � P�� , the product of the probability

of selecting a certain group and the probability of selecting a unit within the selected group.

Following Andrews (2005) we assume

Assumption A.1 (i) f
i� : i � 1g are i.i.d. indices independent of fW (
� ; �) : (
� ; �) 2 �� � T g ;

and (ii) f� t : t � 1g are i.i.d. indices independent of fW (
� ; �) : (
� ; �) 2 �� � T g.

Assumption A.1 allows for proportional sampling by taking the distributions PT and P�� to be

uniform on T and �� , respectively. But some units can be over-sampled when those distributions

are not uniform. Still, the crucial restriction of Assumption A.1 is that it does not allow the
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sampling scheme to depend on the characteristics of the unit. In this sense, there is no sample

selection here.

Given the framework and Assumption A.1, we justify the approach adopted in the main text

in three steps: (i) �rst we state results valid for any group � , justifying Assumption 2 (i.e., known

Pr (Yit � y; Sit � s j � (Ct)) for each group t), Condition 1 (i.e., i.i.d. data conditional on � (Ct)),

and equation (12) in the main text. (ii) Then we introduce some randomness coming from ran-

domly selecting groups � t (!), and show that the former results still hold. Finally, (iii) we obtain

some properties of the distribution of W (
it; � t) across groups � t that justify Condition 2 (i.e.,

fPt(s); Xt; ZtgTt=1 i.i.d. across t). Items (i) and (ii) are important to justify the �rst step of our

estimator - when we run regressions within groups - and item (iii) is important for the second step

of our estimator - when we run regressions across groups.

A.3.1 Probabilistic Framework - Within Groups

For any group � 2 T , de�ne Wi� = W (
i� ; �), and note that fWi� : i � 1g is a subordinated sto-

chastic process (i.e., subordinated to fW (
� ; �) : 
� 2 ��g via the directing process f
i� : i � 1g).21

This process fWi� : i � 1g is de�ned on the probability space
�
WN;AN;PN�

�
, where WN is the in�-

nite product space, AN is the product Borel sigma-�eld on WN and PN� is the probability measure

on
�
WN;AN

�
induced by P, by fW (
� ; �) : 
� 2 ��g and by f
i� : i � 1g.

Given the sampling scheme speci�ed in Assumption A.1(i), the random elements fWi� : i � 1g

are exchangeable. That is,
�
W�(1)� ; :::;W�(n)�

�
has the same distribution as (W1� ; :::;Wn� ) for every

permutation � of (1; :::; n) for all n � 2. As a consequence, we can apply de Finetti�s theorem [e.g.,

see Hall and Heyde (1980, Thm.7.1, p.203) and Andrews (2005)] and obtain the following Lemma:

Lemma 2 Suppose Assumption A.1(i) holds. Then, for any � 2 T , fWi� : i = 1; 2; :::g are ex-

changeable and there exists a �-�eld G� � AN, such that, conditional on G� , fWi� : i � 1g are

i.i.d..

The �-�eld G� equals \1n=1Gn;� , where Gn;� is the �-�eld generated by n-symmetric functions

that depend on fWi� : i � 1g and are invariant to permutations of the �rst n random elements of

fWi� : i = 1; :::; ng. This G� is called the symmetric �-�eld and equals the �-�eld generated by the

common elements of fWi� : i � 1g. It is clear from the present context that the common elements

are C (�) = [X (�) ; U (�; �) ; Z (�)]. Hence, we have G� = � (C (�)), i.e., G� is the �-�eld generated
21See Feller (1966, Chap. X.7, p. 335).
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by C (�).22

Lemma 2 justi�es Condition 1 in the main text (i.e., conditional i.i.d. observations within

groups) if the groups are not randomly selected from T . In cases where there is a sample of groups,

we must go one step further and obtain a similar Lemma conditioned on the selected group. Before

doing so, however, we note that an important consequence of this Lemma is that we can apply a

Law of Large Numbers for exchangeable random variables, e.g., see Hall and Heyde (1980, (7.1),

p. 202):

Lemma 3 Suppose Assumption A.1(i) holds. Let r(�) be a vector-valued function with E kr(W1� )k <

1, then, for any group � ,

1

N�

X
N�
i=1r (Wi� )!p E [r(W1� )jG� ] as N� !1;

where G� is the �-�eld given in the Lemma 1.

In particular, if we take r (Wi� ) = 1 [Yi� � y; Si� � s], then it is possible to recover the joint

distribution function of (Yi� ; Si� ) conditioned on the sub-sigma-�eld G� = � (C� ). Note however

that it is not possible to recover the unconditional distribution of (Yi� ; Si� ), unless this vector

is independent of � (C� ). This independence is ruled out by assumption and, as a result, all

that can be known from the data within group � is the conditional Pr (Yi� � y; Si� � s j � (C� )).

That is what justi�es Assumption 2(ii) (i.e., the conditional distribution Pr (Yit � y; Sit � s j t)

is assumed to be known for each group t = �) and that the equality Pr (Yit � y; Sit � s j t) =

Pr (Yit � y; Sit � s j � (Ct)) holds (the equality (11) in Section 3).

Next, we justify the fundamental equation of the paper: equation (12). Because Y �i� (and, so,

Yi� ) is independent of Z� conditional on (Si� ; X� ; U� (�)), we have the equality

Pr (Yi� � y j Si� = s; � (C� )) = Pr (Yi� � y j Si� = s; � (X� ; U� (�))) , a.s.,

where � (X� ; U� (�)) � � (C� ) is the sub-sigma-�eld generated by (X� ; U� (�)). Moreover, we have

Pr (Yi� � y j Si� = s; � (X� ; U� (�))) = Pr (Yi� � y j Si� = s; � (X� ; U� (s))) , a.s.,

because conditioning on the sub-sigma-�eld � (X� ; U� (�)) \ fSi� = sg is equivalent to conditioning

on the sub-sigma-�eld � (X� ; U� (s)) \ fSi� = sg.
22To be precise, the equality G� = � (C (�)) does not hold exactly. The correct statement is: (i) � (C (�)) � G� ,

and (ii) if A 2 G� , then there exists an element B 2 � (C (�)) such that A = B, PN� -almost surely. For a proof see
Meyer (1966, Lemma VIII-T2 and Theorem VIII-T3, p. 150) and note that his symmetric �-�eld corresponds to our
G� and his tail �-�eld J1;� = \n�1Jn;� , where Jn� = � (Wn+1;� ;Wn+2;� ; :::), corresponds to our � (C (�)). Then,
Lemma 2 also holds with the sigma-�eld � (C (�)) in place of G� . Hence, without too much loss, we abuse notation
and let G� = � (C (�)).
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If we take y = ey, where ey is the value referred in Assumption 1, and de�ne P� (s; C� ) �
Pr (Yi� � ey j Si� = s; � (C� )), then

P� (s; C� ) � Pr (Yi� � ey j Si� = s; � (C� ))

= Pr (Yi� � ey j Si� = s; � (X� ; U� (s))) ; a.s.. (55)

This is the crucial equality (12) for the identi�cation results. There are two important points to

stress here. First, note that conditioning on fSi� = sg is essential to obtain the (almost sure) equal-

ity above, because � (X� ; U� (s)) � � (C� ) and, so, there is no guarantee that Pr (Yi� � y j � (C� ))

would equal Pr (Yi� � y j � (X� ; U� (s))) almost surely. Second, and related to the previous point,

we are guaranteed to have i.i.d. data within group � only when we condition on � (C� ), by Assump-

tion A.1. Conditioning on the sub-sigma-�eld � (X� ; U� (s)) is not su¢ cient for i.i.d. data because

the vector (X� ; U� (s)) is not a common shock a¤ecting all units in group � .

Next, we introduce the randomness coming from the random selection of groups � t (!). To

do so, de�ne the random Wit = W (
it; � t). Let fWit : i = 1; :::; Nt, t = 1; :::; Tg be the sample

obtained by the method presented above. The model, in terms of the �rst sampled units, is

Yit = D (Y �it)

Y �it = G (Sit; Xt; Ut (Sit) ; "it) ;

for i = 1; :::; Nt, t = 1; :::; T (56)

and the sample data is given by f(Yit; Sit; Xt; Zt) : i = 1; :::; Nt, t = 1; :::; Tg.

As before, we note that fWit : i � 1g is de�ned on
�
WN;AN;PN

�
, but now PN is the probability

measure on
�
WN;AN

�
induced by P, by fW (
� ; �) : (
� ; �) 2 �� � T g, by the indices f
i� : i � 1g

and by the indices f� t : t � 1g.23 Next, we establish the same result as in Lemma 2 but for the

sequence fWit : i � 1g.

Corollary 1 Let Wit = Wi� t and let the �-�eld Gt = � (C (� t)) � AN. Suppose Assumption A.1

holds. Then, for all t � 1, fWit : i � 1g are exchangeable and i.i.d. conditional on Gt.

Proof. Conditional on the event f� t (!) = �g 2 F , the probability measure of the sequence

fWit : i � 1g is PN� . The indices f� t : t � 1g are drawn from the countable set T with distribution

PT . Therefore, the probability measure PN equals the product measure PT � PN� . Because PN� is

exchangeable for all � 2 T from Lemma 2, the product PT � PN� is exchangeable in the index i,

and, so, the sequence fWit : i � 1g is exchangeable.
23Now the process fWit : i � 1g is subordinated to fW (
� ; �) : 
� 2 ��g using the directing process�

i�t ; � t : i � 1; t � 1

	
.
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Next, by applying Lemma 2 on the sequence fWit : i � 1g we conclude they are i.i.d. conditional

on the sub-sigma-�eld generated by their common elements. In this case the common factors are

C� t = [X (� t) ; U (�; � t) ; Z (� t)], and we denote this �-�eld by Gt = � (C (� t)).

Let � (C (� t)) = � (Ct). Corollary 1 implies Condition 1 stated in Subsection 4.1 (i.e., con-

ditional i.i.d. data for each group � t). We note that, because the groups are selected randomly

from T , the �-�elds � (C� ) and � (Ct) are not the same. Conditional on the event f� t (!) = �g we

do have the equality � (C� ) = � (Ct), but, unconditionally, � (C� ) is the sub-sigma-�eld generated

by the random C (�) with distribution Q� , while � (Ct) is the sub-sigma-�eld generated by the

subordinated process C (� t) with distribution Q = PT �Q� .

A.3.2 Probabilistic Framework - Across Groups

Next we consider the distribution of the random elements across groups � t. They are important to

justify the second step of our estimator. First, we impose

Assumption A.2 (i) For any � 6= � 0 2 T , any 
� 2 �� and any e
� 0 2 �� 0, the random W (
� ; �)

is independent of W (e
� 0 ; � 0); and (ii) the random fC (�) : � 2 T g are identically distributed.

Assumption A.2(i) states independence of the random W (
� ; �) across groups. There is there-

fore a fundamental asymmetry in the way we treat the observations within groups and across

groups. We allow cross-sectional dependence within groups coming from the common shocks C (�),

but we do not allow dependence of W (
� ; �) across groups. It is possible to allow for dependence

of W (
� ; �) across groups, but we do not pursue this approach here for simplicity. Moreover, we

also restrict C (�) to have identical distribution, so Q� is the same for all � 2 T .

Remember the de�nition P� (s; C� ) � Pr (Yi� � ey j Si� = s; � (C� )), and de�ne the analogous

Pt (s; Ct) � Pr (Yit � ey j Sit = s; � (Ct)), for the cases where the groups are randomly selected.

Assumption A.2 together with Assumption A.1 and Lemma 4 below imply that the unfeasible data

fPt (s) ; Xt; Zt : t � 1g is i.i.d.. If this data were feasible, we could use the results of Chen and

Pouzo (2009, 2011) directly in the second step of our estimator. Despite this fact, Lemma 4 allows

us to use some of Chen and Pouzo�s results, which simpli�es considerably the derivation of the

asymptotic properties of our estimator.

Assumptions A.1 and A.2 imply the following Lemma:

Lemma 4 Suppose Assumptions A.1 and A.2 hold. Then, fPt (s; Ct) ; Xt; Zt : t � 1g are i.i.d., for

any s 2 S.
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Proof. Assumption A.2 states that fC (�) : � 2 T g is i.i.d. across � . So the sub-sigma-�elds

fG� : � 2 T g are independent and Pr (Yi� � y; Si� � s j G� ) also are independent across � . Because

fS (
� ; �) : (
� ; �) 2 �� � T g are independently distributed across � 2 T by Assumption A.2(i),

then, for any s 2 S, Pr (Y (
� ; �) � y j fS (
� ; �) = sg \ G� ) is independent of the conditional

Pr (Y (
� 0 ; �
0) � y j fS (
� 0 ; � 0) = sg \ G� 0), for any � 6= � 0. In particular, if we take y to be ey, we

conclude that P� (s; C� ) and P� 0 (s; C� 0) are independent for any � 6= � 0.

Moreover, because f(
it; � t) : i � 1; t � 1g are i.i.d. indices independent of {W (
� ; �) : (
� ; �) 2

�� � T } (by Assumption A.1), then, for any t 6= t0, the sub-sigma-�elds Gt \ fS (
it; � t) = sg and

Gt0 \ fS (
it0 ; � t0) = sg must be independent of each other. We conclude Pt (s; Ct) and Pt0 (s; Ct0)

also are independent for any t 6= t0.

Next, because P� (s; C� ) = Pr (Yi� � ey j Si� = s;X� ; U� (s)) a.s., and because, for any � 6= � 0,

(X� ; U� (s)) and (X� 0 ; U� 0 (s)) are identically distributed by Assumption A.2, then, for all s 2 S,

P� (s; C� ) and P� 0 (s; C� 0) have the same distribution. The same result carries over to Pt (s; Ct) and

Pt0 (s; Ct0) for any t 6= t0 by Assumptions A.1. Therefore, fPt (s; Ct) ; Xt; Zt : t � 1g is i.i.d..
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