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Abstract

Protecting and restoring natural ecosystems are critical cost-e�ective strategies to �ght
global climate change. Brazil holds vast amounts of degraded lands in tropical regions and,
thus, has great potential to contribute to restoration-based carbon sequestration. However,
by design, the Brazilian innovative and successful satellite-based monitoring system focuses
on combating primary forest loss and does not detect losses on secondary vegetation. In
this paper, we document the substantial growth in the area occupied by secondary
vegetation in the Brazilian Amazon during 2004�2014, and investigate the extent to which
that regeneration resulted from unanticipated spillover e�ects of law enforcement policy.
Using large and rich pixel-level data over that time period, we �nd that increasing (by one
standard deviation) the intensity of enforcement in a pixel's neighborhood increases
regenerated area in that pixel by 6%. Counterfactual exercises suggest that improvements
to existing monitoring system could contribute further by augmenting total secondary
vegetation cover by nearly 300 thousand hectares. This is the �rst study documenting
positive spillover e�ects of command-and-control environmental policies, suggesting that
such policies can have greater impacts on social welfare than previously thought.
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1. Introduction

With the threat of climate change looming nearer, there is a pressing need for global action

to mitigate the adverse e�ects of global warming (Greenstone and Jack, 2015; Nordhaus,

2019). Protecting and restoring natural ecosystems � especially tropical forests � are critical

in any global strategy given their vital role, and their cost-e�ectiveness, in absorbing and

stocking carbon (Stern, 2006; IUCN and Winrock, 2017; IPCC, 2018).2 Indeed, ecosystem

restoration �gures prominently among the United Nations (UN) Sustainable Development

Goals, and substantial e�orts to regenerate forests worldwide are currently underway, with

various degrees of success (Dave et al., 2017).

Brazil occupies a unique position in the global restoration scenario: It holds vast

amounts of degraded and deforested lands within tropical ecosystems, with great potential

for restoration-based carbon sequestration (Niles et al., 2002; Chazdon et al., 2016). In

spite of this potential, tropical conservation e�orts there have not been focused on

promoting forest regeneration. Brazil's strategic measures focused on combatting primary

forest loss during the last two decades; they were largely successful, directly contributing to

a reduction in tropical clearing rates in the Amazon of more than 80% (Hargrave and

Kis-Katos, 2013; Assunção et al., 2015; Burgess et al., 2018), drawing considerable

attention from policy makers, academics, and the civil society. Yet another � no less

remarkable � phenomenon occurred quietly during the same period (see Figure 1). The

area covered by secondary vegetation in the Amazon increased by more than 70%, rising

from less than 10 million hectares in 2004 to more than 17 million hectares ten years later

(Inpe and Embrapa, 2016a). (Secondary vegetation is de�ned as vegetation that grows in

areas that experienced clear-cut deforestation.) Thus, by 2014, nearly a quarter of the area

historically cleared in the Brazilian Amazon already contained tropical forest regrowth.

That a phenomenon of this magnitude remained unnoticed seems unlikely; yet it is not

an overstatement to claim that secondary vegetation was invisible from both policy and

empirical perspectives. There were no policy e�orts aimed at either promoting regeneration

or protecting existing secondary vegetation (Casa Civil, 2004; MMA, 2009; MMA,2013).

Remote sensing data on Amazon-wide regeneration were not available until the early 2010s,

and � most importantly � Brazil's world-renowned satellite-based tropical forest monitoring

systems, the key tools for e�ectively targeting Amazon law enforcement e�orts, completely

overlooked tropical regrowth.

This paper explores the unique empirical setting of Amazon regeneration, particularly

its invisibility to monitoring systems, to assess the existence of policy spillovers. In light of

the improvement in law enforcement capacity brought about by the adoption of

satellite-based high-frequency monitoring of deforestation activity, it proposes two

2International Union for Conservation of Nature (IUCN) and Winrock International (2017) estimate that
the restoration of 350 million hectares of degraded and deforested lands worldwide by 2030 has the potential
to absorb 1.7 GtCO2 per year, with approximately USD 170 billion in net annual bene�ts from watershed
protection, improved agricultural yields and forest products.
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Figure 1: Brazilian Amazon Deforestation and Regeneration, 2000�2014
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Deforestation and Regeneration, Brazilian Amazon

action plan adopted deforestation regeneration

Notes: The graph plots the Brazilian Amazon annual deforestation rate and total secondary vegetation cover, and marks the
year the action plan was launched. Secondary vegetation is de�ned as that which grows in deforested areas. Data sources:
PRODES/Inpe (deforestation), TerraClass/Inpe and Embrapa (secondary vegetation).

alternative mechanisms for how environmental law enforcement targeting the clearing of

primary (never deforested) vegetation might a�ect tropical regrowth. Both mechanisms

relate the perceived risk of engaging in an illegal activity and the demand for deforested

area. Clearing tropical forest without due licensing/authorization is illegal in the Brazilian

Amazon, but so is using the land in areas that have been illegally deforested. As such, if

stricter law enforcement increases the perceived risk of getting caught and punished for an

environmental infraction, potential o�enders might respond by altering both forest clearing

and land use practices. On the one hand, o�enders might seek to evade enforcement by

shifting their activities to areas that are less likely to be targeted (a problem known as

�leakage�). In this scenario, instead of clearing primary forest and thereby risk getting

caught by the monitoring system, o�enders cut secondary forest and use these areas for

production instead. Consequently, demand for previously deforested areas increases, and

the extent of secondary vegetation decreases. On the other hand, enforcement might have a

broad deterrence e�ect, causing o�enders to give up on using deforested land altogether.

With decreased demand for previously deforested areas, these areas are eventually

abandoned, allowing a natural process of regeneration to take place and thereby increasing

the extent of secondary vegetation. Hypothesized e�ects on regeneration in both

displacement (the former) and deterrence (the latter) scenarios constitute policy spillovers,

as enforcement exclusively targeted the loss of primary vegetation and was not aimed at

in�uencing forest regrowth. Yet, which mechanism dominates and, in fact, whether

enforcement a�ected regeneration at all remain to be answered empirically.
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We investigate the potential relationship between law enforcement and secondary

vegetation using a spatially explicit dataset covering the full extent of the Brazilian

Amazon. Although satellite-based panel data on regeneration serve as the basis for dataset

construction, we argue that the long-term cross-sectional di�erence in secondary vegetation

area is less prone to measurement error than the time-series variation and is, thus, a

preferable measure of the extent of regeneration. Because data on secondary vegetation are

built from interpretation of satellite imagery, forest regrowth must be visible in the image.

Yet, as imagery is inherently limited by the satellite's spatial resolution, it is plausible to

expect that any given deforested area must accumulate su�cient natural biomass to be

classi�ed as secondary vegetation. Tropical regeneration is a time-consuming process that

may take decades to occur in abandoned deforested areas (Alves et al., 1997; Aide et al.,

2000; Guariguata and Ostertag, 2001), but data for secondary vegetation in the Amazon is

only available for select years in the 2004 through 2014 period. Hence, to avoid noise from

the time-series variation, we collapse the panel data into a cross-sectional ten-year

di�erence in secondary vegetation coverage. However, we still use information on the

persistence of secondary vegetation to build an arguably more robust measure of

regeneration and thereby mitigate concerns regarding misclassi�cation of degraded forest.

Based on this spatial cross-sectional setup, and using georeferenced deforestation alerts

to capture law enforcement, the analysis tests whether cell-level changes in the extent of

secondary vegetation are associated with the intensity of environmental enforcement in a

cell's surroundings. Results support the existence of both policy and spatial spillovers �

enforcement activity happening within 20km of a cell's surrounding had a signi�cant impact

on regeneration outcomes inside that cell. The spillover e�ect is sizable. An increase of one

standard deviation in the intensity of neighborhood enforcement is estimated to increase

the probability of cell-level expansion in secondary vegetation coverage by 11% of the

sample mean, and to increase the area of secondary vegetation inside the cell by 6% of the

sample mean. Counterfactual exercises show that feasible improvements to Brazil's tropical

forest monitoring system could contribute to increase secondary vegetation cover by nearly

300 thousand hectares. The overall stability of estimated coe�cients across the inclusion of

controls for spatially explicit observables suggests that the proposed strategy adequately

addresses concerns regarding omitted variable bias. Reverse causality is not a primary

concern here given that regeneration does not a�ect enforcement by the design of the

Brazilian monitoring system. We interpret these �ndings as evidence that

deforestation-oriented enforcement a�ected regeneration via the deterrence mechanism, in

which environmental o�enders, once faced with a higher perceived risk of illegal activity,

abandon the region they are operating in and thereby allow a natural process of forest

regrowth to occur. This constitutes evidence of important and unanticipated policy

spillovers. To the best of our knowledge, this is the �rst study documenting positive

spillover e�ects of command-and-control environmental policies, suggesting that such

policies may have greater impacts on social welfare than previously thought.
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The analysis also documents important heterogeneity across proximity to local remaining

primary forest cover. The spillover e�ect of law enforcement on regeneration appears to

be largest in places that have undergone neither too much nor too little deforestation: in

the former, forest clearings and non-forest land use are probably more consolidated, making

abandonment and subsequent regrowth less likely; in the latter, there is still relatively little

area for the forest to grow back in.

Related Literature. Our paper contributes �rst to an increasing number of studies that are

making the case for the growing relevance of accounting for spillovers in the context of

conservation policy impact evaluation (Baylis et al., 2016; Pfa� and Robalino, 2017).

Several studies provide empirical evidence for the existence of conservation policy spillovers,

but typically in contexts other than law enforcement. The most common examples are

assessments of externalities from PES programs (Alix-Garcia et al., 2012, 2013;

Jayachandran et al., 2017), and leakage or halo e�ects from protected territory (Herrera,

2015; Robalino et al., 2017). The literature assessing law enforcement under the action plan

has largely focused on the policy's direct impacts on deforestation. Although stricter

enforcement has been shown to have signi�cantly reduced Amazon forest clearings

(Hargrave and Kis-Katos, 2013; Assunção et al., 2019), it is the priority municipalities

policy that, among all action plan e�orts, has received most attention in the enforcement

spillover literature. Results are mixed, with Cisneros et al. (2015) �nding no evidence of the

policy's deterrent e�ect on priority municipalities' neighbors, but both Andrade (2016) and

Assunção et al. (2018) documenting signi�cant reductions in non-priority municipalities

located near priority ones. As far as we are aware, this is the �rst assessment of tropical

regeneration as a spillover of action plan policies, and of law enforcement speci�cally. It is

also the �rst study in the economic literature to explore the rich spatial data recently

released on detailed classi�cations of land use in Amazon deforested areas.

This analysis also speaks to a growing literature on the importance of tropical

regeneration. The environmental services provided by secondary vegetation have been

widely documented. These include, but are not limited to, carbon sequestration,

reestablishment of hydrological services, soil protection, and creation of ecological corridors

for fauna and �ora (Almeida et al., 2010; Caviglia-Harris et al., 2015; Uriarte and Chazdon,

2016; Crouzeilles et al., 2017; Tyukavina et al., 2017). This study contributes to this

literature by shedding light on how policy in�uences regeneration in an empirical setting

where this phenomenon is happening at scale.

Finally, an important disclaimer is in order: this work in no way claims that primary

and secondary forests are biologically or ecologically equivalent, nor does it mean to argue

that regeneration makes up for the devastation caused to the Brazilian Amazon over years

of predatory deforestation. Rather, its goal is to shed light upon a phenomenon which is

sizable, ongoing, and largely unknown. A better understanding of the remarkable growth in

tropical regeneration could help inform decision-makers, shape future policy, and ultimately

contribute to ongoing e�orts for conserving the Amazon forest while promoting regional
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development.

The paper proceeds as follows: Section 2 describes the institutional context and proposes

mechanisms through which, given this context, law enforcement could in�uence regeneration;

Section 3 describes the data; Section 4 details the empirical strategy; Section 5 reports and

discusses estimation results and counterfactual simulations; and Section 6 concludes with

policy implications.

2. Institutional Context

In this section, we present the relevant background for the Brazilian Amazon, focusing on

the institutional context and the introduction of satellite monitoring in 2004. We also discuss

potential alternative mechanisms relating the monitoring system and forest regrowth.

The Brazilian Amazon accounts for two-thirds of the Amazon Rainforest and is itself a

truly vast area, almost ten times the size of California. To date, around 20% of the Brazilian

Amazon has been deforested � an area totaling over 700,000 square kilometers (which is

larger than Texas.) Deforested areas are used mainly for agriculture: approximately two

thirds of the cleared area comprises pasture, and around 6 percent is used for crops (Inpe

and Embrapa, 2016a).

The Monitoring and Enforcement Systems. In 2004, the Brazilian federal government

launched an ambitious plan to combat deforestation in the Amazon, the Action Plan for the

Prevention and Control of Deforestation in the Legal Amazon (PPCDAm). The cornerstone

of the PPCDAm was a new satellite monitoring system, the System for Real-time Detection

of Deforestation (DETER), developed by the Brazilian Institute for Space Research

(INPE).3 The adoption of DETER introduced near-real-time monitoring of forest

disturbances, allowing Amazon clearings to be detected and acted upon in a more timely

manner � as opposed to the previous system, fundamentally based upon land and air

patrols (and limited in their e�ectiveness given the sheer extent of the area covered and

risks posed to law enforcers). In the new system, INPE detects areas experiencing a loss of

forest cover, in turn triggering DETER deforestation alerts for the immediate attention of

law enforcers at the Brazilian Environmental Protection Agency (IBAMA), which then

sends inspectors to the hot spots and penalizes o�enders, by issuing �nes or con�scating

equipments, when appropriate.4 Existing evidence suggests that this satellite-based system

alone has had an important impact: estimated deforestation in the absence of the system in

2006�2016 would have been four times greater (Assunção et al., 2019). Indeed, Brazil's

3Several other conservation e�orts were adopted under the PPCDAm framework, including: the
strengthening of the regulatory environment concerning administrative sanctions for illegal deforestation;
the identi�cation of priority areas for di�erential action; the conditioning of rural credit concession upon
compliance with environmental and land-titling requirements; and the the targeted expansion of protected
areas.

4Created in 1989, IBAMA executes environmental policies and serves as the national police authority for
the investigation and sanctioning of environmental infractions.
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system for detecting tropical forest loss is now widely recognized as being at the forefront of

national e�orts to combat deforestation (Tyukavina et al., 2017).

Despite the important impacts of the system in preventing deforestation, the loss of

secondary vegetation remained entirely invisible to DETER and, thus, to environmental

authorities. This was partly due to a lack of available data. The country �rst started

mapping Amazon deforestation the late 1980s. Since then, once an area of primary forest

has been cleared, it is not revisited in future satellite imagery and becomes part of what is

known as an accumulated deforestation mask. Through the early 2010s, Brazil had no

system to track or measure Amazon-wide regeneration. The �rst map of tropical secondary

vegetation, referring to land use in 2008, was only produced in 2012; it took another four

years for data on 2004 and 2014 secondary vegetation cover to be released (see Online

Appendix B.3 for details). More importantly, perhaps, was the fact that, in its �rst decade,

the PPCDAm neither promoted regeneration, nor explicitly sought to protect existing

secondary vegetation. Rather, it focused exclusively on combating the clearing of primary

vegetation. It was designed to scan for signs of forest disturbance strictly outside the

accumulated deforested area. Consequently, the loss of secondary vegetation is not

accounted for in Amazon deforestation �gures, nor does it trigger any forest clearing alerts

in the DETER system.

Possible Channels. This institutional setting suggests two alternative mechanisms for a

potential e�ect of deforestation-oriented law enforcement on regeneration. On the one

hand, stricter monitoring and enforcement enabled by DETER might have displaced

demand for cleared areas towards secondary forest � we henceforth refer to this as the

displacement channel. Because the system used to target enforcement does not detect

secondary deforestation, there is a lower chance of an o�ender getting caught and punished

if clearing secondary versus primary vegetation. Hence, a potential o�ender seeking to use

cleared land in the Amazon could attempt to elude monitoring by shifting his deforestation

activities to regenerated areas. In this scenario, one would expect to see a decrease in the

extent of secondary vegetation.

Three elements arguably favored this change in forest clearing behavior. First, the extent

of secondary vegetation was already sizable in the mid-2000s (see Figure 1), providing ample

supply of regenerated areas that were invisible to the monitoring system. Second, because

secondary vegetation is typically sparser than primary forest, clearing these areas is likely

easier and less costly. Finally, it could be argued that poorer soil quality) in areas covered

by secondary forest would limit displacement towards previously cleared areas, due to lower

expected gains from land use. This, however, is most relevant to crop farming, which covered

less than 6% of the area historically cleared in the Brazilian Amazon through 2014 (Inpe and

Embrapa, 2016a). With over two thirds of Amazon deforested areas being used as pasture,

which demands less nutrients from the soil, it seems reasonable to expect that potential

o�enders would seek to minimize their chance of getting caught, even if at a relatively minor
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cost to production.5

On the other hand, because using illegally cleared areas in the Amazon is illegal in and

of itself, stricter monitoring and enforcement might have broadly inhibited illegal activity

and thereby lowered the demand for deforested areas � we henceforth refer to this as the

deterrence channel. Cleared areas that are no longer in use are often abandoned. This reduces

human interference in these areas and allows a natural process of regeneration to occur. In this

case, one would expect to see an increase in the extent of secondary vegetation. An increase

in the area covered by forest regrowth would also be expected if farmers hold inaccurate

beliefs about the monitoring system, assuming DETER also monitors secondary forests in

the Amazon.

3. Data and Descriptive Evidence

This section describes the key elements of dataset construction (Section 3.1) and

presents descriptive statistics (Section 3.2). The Online Appendix provides a detailed

account of the spatial setup (Appendix A), data sources (Appendix B), and variable

construction (Appendix C).

3.1. Dataset Construction

We assembled a rich spatial dataset from a variety of publicly available sources. The

area we consider is the Amazon biome, which is de�ned based on biophysical and ecological

criteria.6 We rasterized the Brazilian Amazon Biome at the 900 meters resolution. (A raster

is a matrix data structure that represents a regular grid of cells.) That means that our grid is

composed of 900m by 900m square cells; the total number of cells in our data is 5.2 million.

Each cell in turn is subdivided into 30m by 30m square minicells, which allows us to calculate

variables based on higher resolutions; e.g., shares of deforested area in a cell can be calculated

by counting the number of deforested minicells. (See details in Online Appendix A.)

The baseline sample comprises all Amazon biome cells that contained strictly positive

shares of deforestation (i.e., at least one deforested minicell) in 2003. We take that as the

baseline year because the �rst year for which there are data on the extent of secondary

vegetation is 2004 (see Section 2). Further, secondary vegetation, by de�nition, can only

grow in areas that have been deforested � hence the need to restrict the sample to cells

with strictly positive shares of cleared areas. Cells in which deforestation started in 2004

or later are not included in the analysis to mitigate both endogeneity concerns (as recent

clearings trigger deforestation alerts, but also increase the potential area for forest regrowth)

5The case of Zona Bragantina, in eastern Pará state, indicates that the conversion of secondary forests
into agricultural lands is not only a theoretical possibility, but a practical one. Vieira (2013) documents that,
through 2008, the region saw reductions in both primary and secondary forest areas, alongside an increase in
pasture areas in the 2000s. This anecdotal evidence supports the idea that the clearing of secondary forest
areas can o�er economically viable alternatives for agricultural production in the Brazilian Amazon.

6The Brazilian Amazon biome is entirely contained within the Legal Amazon, which in turn is a geopolitical
administrative subdivision that encompasses the following states: Acre, Amapá, Amazonas, Mato Grosso,
Pará, Rondônia, Roraima, and Tocantins, as well as the western part of the Maranhão state.
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and the chance of picking up on misclassi�ed secondary vegetation (as degraded primary

vegetation may be erroneously classi�ed as secondary vegetation � see Appendix C for a

detailed discussion).

In light of the role played by proximity to primary vegetation in the regeneration process,

the extent of remaining primary vegetation in the cell at baseline is used as an additional

selection criteria for the benchmark sample. Speci�cally, the literature on ecological and

biophysical determinants of regeneration shows that proximity to primary forest is a key

driver of tropical regeneration (Crouzeilles et al., 2016; Latawiec et al., 2016; Uriarte and

Chazdon, 2016). Although an in-depth assessment of the underlying mechanisms behind

this relationship are outside the scope of this paper, the importance of primary forests can

be broadly summarized by their role as sources of seeds and as habitats for animals that

disperse seeds, pollinators, and predators of pathogens that threaten forest development.

Given this, a cell with a small amount of deforestation will likely contain more remaining

primary vegetation, which typically favors tropical regrowth. Yet, on the other hand, a small

amount of deforested land o�ers a relatively small area upon which secondary forest can

grow. Because these e�ects pull the total amount of forest regrow in opposite directions, we

take the benchmark sample as a subset of the baseline sample that is further restricted to

cells containing at least 50% primary forest cover in 2004. (We provide robustness analysis

by varying this fraction in the benchmark sample.)

Next, we discuss the construction of the variables used in this study, together with the

main data sources.

Secondary Vegetation. To measure secondary vegetation, one needs to identify �rst areas

that experienced tropical forest loss. The Project for Monitoring Deforestation in the Legal

Amazon (PRODES), established by INPE in 1988, provides georeferenced data on annual

tropical deforested area. PRODES, however, does not register how land is used once an

area is deforested. The TerraClass Amazônia, a joint e�ort between INPE and the Brazilian

Enterprise for Agricultural Research (Embrapa), provides land use data for all deforested

areas throughout the Brazilian Legal Amazon for select years from 2004 to 2014. The system

identi�es several land use categories, including forest regrowth, within the full extent of the

PRODES accumulated deforested mask.7 TerraClass de�nes secondary vegetation as areas

that were once clear-cut, but currently contain trees and/or shrubs. It includes neither

pasture under regeneration, nor commercial reforestation. This category therefore captures

tropical regeneration. Figure 2 shows secondary vegetation mapped in each Amazon state in

2014.

Although TerraClass data has low rates of misclassi�ed land use (Salum et al., 2011;

7The land use categories are: four types of pasture (grassy, shrubby, exposed soil, under regeneration);
cropland (predominantly annual crops); secondary vegetation (detailed in what follows); reforestation
(commercial forests of exotic species); urban; mining; mosaic of uses (where no single use can be discerned);
and others (a residual category). If clouds, shadows cast by clouds, or smoke from �res obstruct visibility
in imagery, the blocked area is classi�ed as unobservable. See Almeida et al. (2016) for a full description of
TerraClass classes and methodology.
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Figure 2: Regeneration by Amazon State, 2014

(a) Acre (b) Amapá (c) Amazonas

(d) Maranhão (e) Mato Grosso (f) Pará

(g) Rondônia (h) Roraima (i) Tocantins

Notes: The maps plot secondary vegetation area by Amazon state in 2014. States are not to scale across sub-�gures. Because
secondary vegetation patches are small at the sate-level scale, it is di�cult to see the di�erence across years in print. Although
available for other years, maps are therefore restricted to 2014 for illustrative purposes only. Data sources: TerraClass/Inpe and
Embrapa (secondary vegetation); IBGE (states).

Almeida et al., 2010), the classi�cation of forest regrowth is an empirically challenging

endeavor. There are two main reasons for this � one inherent to the use of satellite

imagery, the other a consequence of the design of Brazil's satellite-based systems. First,

because data on secondary vegetation are built from interpretation of satellite imagery,

regrowth must be visible in the image to be detected. As imagery is limited by the

satellite's spatial resolution, it is plausible to expect that any given deforested area must

accumulate su�cient natural biomass to be classi�ed as secondary vegetation. Yet, tropical
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regeneration is a time-consuming process that may extend over decades.8 It is therefore

likely that areas that are already under regeneration may take several years to show up in

satellite-based land use classi�cation systems. (Short-term time-series variation in

regeneration data derived from remote sensing is therefore prone to substantial

measurement errors.)

Second, Brazil's land use classi�cation system cannot distinguish degraded primary forest

from actual secondary vegetation. The problem is that an area that has been su�ciently

degraded and has lost enough biomass may be mis-classi�ed as deforested (clear-cut) area

by PRODES. It is then incorporated into PRODES deforested mask, making it available

for classi�cation under TerraClass. But since that area may continue to be just degraded

forest (and so not put into agricultural use), TerraClass detects vegetation and classi�es

it as secondary vegetation. In this way, the total area covered by secondary vegetation

may be overestimated in TerraClass. (See details in Appendix C.) This is particularly

concerning in light of the increasing relevance of tropical degradation, as compared to clear-

cut deforestation, in the Brazilian Amazon (Souza Jr. et al., 2013; Rappaport et al., 2018).

In light of this, we draw on the biophysical nature of forest processes to propose an

alternative measure of secondary vegetation that is arguably less vulnerable to

misclassi�cation errors. While an area under regeneration typically sees an increase in

biomass over time, degraded forests experiences the opposite trend. It is thus likely that, as

degradation continues, a given area will eventually cease to look like secondary vegetation

and will be classi�ed in TerraClass according to some other use, like pasture. We therefore

consider a more conservative measure of tropical regeneration, which we call

�non-decreasing secondary vegetation�. This measure only considers an area as containing

tropical regrowth if it meets two criteria: (i) it has been classi�ed as secondary vegetation

for at least two consecutive TerraClass years, and (ii) once classi�ed as secondary

vegetation, it never ceases to be classi�ed as secondary vegetation.9 Importantly,

non-decreasing secondary vegetation likely excludes fallow lands containing tropical

regrowth, which are part of agricultural production cycles (Vieira et al., 2003; Perz and

Walker, 2002). The classi�cation applies to the 30m by 30m minicell, allowing for the

calculation of shares of non-decreasing secondary vegetation in the 900m rater cells.

We also consider a second measure of regeneration for robustness: an indicator variable

that equals 1 if the ten-year di�erence in the share of secondary vegetation in a cell is greater

8The literature indicates that natural regeneration following the abandonment of once agricultural lands
extends over several decades before aboveground biomass, stem density, and species richness are restored to
mature forest levels, with estimates ranging from 30 to 40 years (Aide et al., 2000; Chazdon, 2008). Although
reestablishing plant composition of old-growth forest is likely to take centuries (Guariguata and Ostertag,
2001), empirical assessments of Brazilian Amazon regeneration indicate that, 18 years after abandonment,
secondary vegetation biomass was roughly half that of primary forest (Alves et al., 1997).

9The classi�cation algorithm detects permanence by using the full TerraClass time series, not just the
beginning and end data points. The only exception to this rule is for areas in which satellite visibility is
compromised by visual obstructions, as these do not indicate a change in land use, but a technical limitation
in the imagery interpretation system.
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than or equal to 0.1, and 0 otherwise. The indicator signals whether secondary vegetation

expanded over at least one tenth of the cell during the sample decade, 2004�2014. (We also

perform robustness analyses by varying the 10% threshold.)

DETER Alert System. We use the spatial distribution of forest clearing alerts from INPE's

DETER system as a measure of the regional intensity of law enforcement. As DETER alerts

are used to target law enforcement, the greater the intensity of alerts in a given area, the

more likely it is that law enforcers will visit that area. (To the best of our knowledge, there

is no available georeferenced data on enforcement deployment for the Brazilian Amazon.)

Monthly vector data on georeferenced alerts are rasterized at the 900m resolution, such

that a cell will take on a value of 1 if it contains an alert and a value of 0 otherwise. Alert

intensity is calculated as the total number of alert cells over the 2006 through 2013 period

as a share of total neighborhood cell count. (Recall that 2006 is the year in which DETER

became fully operational). See Appendix B.2 for further details.

Additional Variables. We complement the secondary vegetation and the DETER alert system

datasets with additional variables that a�ect forest regrowth. All variables are either time-

invariant, accumulated over the sample decade (2004�2014), or year-speci�c.

First, we consider municipality indicators (�xed-e�ects) to account for regional levels of

regeneration, as a�ected by municipal initiatives and economic structure. Second, we

incorporate more speci�c geographic location by taking into account the cell's latitude and

longitude, thereby allowing for natural characteristics like soil quality, topography, and

proximity to water, as well as proximity to roads and to major economic centers and ports.

(In the data, latitude/longitude values refer to a cell's centroid.)

Third, weather variables account for average conditions that might favor or hinder tropical

regeneration. Monthly data compiled by Matsuura and Willmott (2015) serve as the basis

for building these variables. The authors use multiple sources of global weather data to

calculate a regular georeferenced world grid of estimated temperature and rainfall over land.

This database has been extensively used in the economic literature both to evaluate the

impact of climate variables on economic outcomes and to provide relevant temperature and

rainfall controls (Dell et al., 2014). We calculated average annual temperature and total

annual rainfall from the monthly data for each Amazon cell.10

Fourth, clouds, shadows cast by clouds, and smoke from forest �res can all a�ect visibility

in satellite imagery and thereby introduce error in observed land cover. We therefore consider

�satellite visibility� as the share of cell area su�ering from visual obstructions in 2004 and

2014. Fifth, to account for the area where secondary forest could grow, we compute the 2004

baseline cell-level accumulated deforestation, using the PRODES mask.

10Data points in the original dataset refer to grid nodes, not cells, such that average annual temperature
and total annual rainfall are calculated from the monthly data for each Amazon grid node. Because the spatial
resolution for this dataset is much lower than 900m, cell weather values are the 2006 through 2013 averages
of all grid node values within 180km of each cell. This distance ensured all sample cells had non-missing
weather data.
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Table 1: Sample Deforestation and Regeneration

Brazilian Amazon baseline sample: benchmark sample:
primary forest ≥ 0 primary forest ≥ 0.5

raster cell count (900m resolution) � 1,157,648 403,191

deforested area, historical through 2003 (ha) 62,726,908 55,762,471 5,684,454
2004 secondary vegetation (ha) 9,671,861 9,307,164 1,995,152
2004 non-decreasing secondary vegetation (ha) � 4,632,612 1,126,561

deforested area, historical through 2013 (ha) 74,261,876 63,690,094 10,322,528
2014 secondary vegetation (ha) 17,305,640 14,320,640 3,445,083
2014 non-decreasing secondary vegetation (ha) � 9,607,376 2,399,001

Notes: The table reports total deforested and regenerated areas in the Brazilian Amazon, the baseline sample, and the
benchmark sample. The baseline sample comprises all Amazon biome cells that contained non-null deforestation through 2003;
the benchmark sample is a subset of this that is further restricted to cells that contained at least 50% primary forest cover in
2004. Areas for the Brazilian Amazon are calculated from vector data, while baseline and benchmark areas are calculated from
the analysis' raster dataset. Non-decreasing secondary vegetation is a measure built for this empirical analysis (see Section 3.1)
and has therefore not been computed for the full extent of the Brazilian Amazon. Data sources: PRODES/Inpe (deforestation);
TerraClass/Inpe and Embrapa (secondary vegetation).

Finally, observed policy controls address other conservation e�orts that could a�ect local

regeneration and regional law enforcement. Annual spatial data on protected areas come

from the Brazilian Ministry of the Environment (MMA), and on indigenous lands come from

the Brazilian Native Peoples Foundation (FUNAI) and the Socioenvironmental Institute

(ISA).11 Throughout this analysis, an indigenous land is only regarded as protected when it

has completed the declaration stage, at which point its spatial boundaries have been published

via ordinance.12 Protection status is captured by an indicator that �ags whether a cell was

under protection of any kind (indigenous lands, strictly protected areas, or protected areas

for sustainable use) at any point from 2004 through 2014.

3.2. Descriptive Statistics

Table 1 summarizes deforestation and regeneration areas across the Brazilian Legal

Amazon, the baseline sample, and the benchmark sample. Observed di�erences in areas

across samples result from a combination of the following factors: (i) the Brazilian Legal

Amazon is geographically larger than the Amazon biome; (ii) conversion from vector to

raster data might result in area discrepancies due to loss of overlapping areas and spatial

precision; and (iii) baseline and benchmark samples exclude cells with no deforestation by

2003. The table also shows that the total extent of non-decreasing secondary vegetation in

11FUNAI publicly releases spatial vector data for indigenous lands throughout the country. This dataset
contains date variables for each of the indigenous territory recognition stages, enabling the construction of a
georeferenced annual panel. Despite being the o�cial source for information on indigenous lands in Brazil, the
FUNAI dataset contains several occurrences of missing data for date variables. We address these gaps using
information from ISA, which compiles its own historical record of the many recognition stages for indigenous
territories. ISA data are publicly available online and were collected using a data-scrapping algorithm. The
ISA-based dates �ll in the gaps in FUNAI data, but never replace them.

12Chiavari et al. (2016) support this cuto� stage, stating that indigenous territories are only protected once
they have been declared.
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Table 2: Descriptive Statistics for Regression Variables

Brazilian Amazon benchmark sample

mean std. dev. mean std. dev.

2004 secondary vegetation (% cell area) 0.0220 0.0865 0.0611 0.0862
2004 non-decreasing secondary vegetation (% cell area) 0.0109 0.0565 0.0345 0.0663
2014 secondary vegetation (% cell area) 0.0366 0.1167 0.1056 0.1274
2014 non-decreasing secondary vegetation (% cell area) 0.0243 0.0887 0.0735 0.1009

d=1 if 2004-2014 ∆ secondary vegetation ≥ 0.1 cell area 0.0630 0.2430 0.2031 0.4023
2004-2014 ∆ secondary vegetation 0.0146 0.0919 0.0445 0.1181
2004-2014 ∆ non-decreasing secondary vegetation (% cell area) 0.0133 0.0605 0.0390 0.0785

alerts 5km neighborhood ring (% ring area) 0.0590 0.1920 0.1809 0.3067
alerts 10km neighborhood ring (% ring area) 0.0590 0.1576 0.1608 0.2372
alerts 20km neighborhood ring (% ring area) 0.0589 0.1327 0.1429 0.1881
alerts 50km neighborhood ring (% ring area) 0.0583 0.1039 0.1173 0.1321
alerts 100km neighborhood ring(% ring area) 0.0572 0.0819 0.0962 0.0985

2004 primary forest (% cell area) 0.7656 0.3853 0.7958 0.1512

total annual rainfall (mm) 2326.69 448.39 2182.20 368.65
average annual temperature (Celsius) 26.41 0.98 26.28 1.06
2004 unobservable TerraClass (% cell area) 0.0108 0.0820 0.0137 0.0553
2014 unobservable TerraClass (% cell area) 0.0070 0.0581 0.0146 0.0682
baseline accumulated deforestation (% cell area) 0.1318 0.3040 0.1742 0.1435
alert intensity (year average) 0.0590 0.3152 0.2216 0.5766
d=1 if protected 0.4879 0.4999 0.1922 0.3941

Notes: The table presents mean and standard deviations for variables used in the empirical analysis. Units are shown in
parentheses; indicator variables are identi�ed with �d=1�.

the analytical sample is not only sizable, but actually represents a relevant share of

secondary vegetation area recorded in TerraClass: in 2004, it amounted to 4.6 million

hectares, or about 50% of secondary vegetation observed in the baseline sample; in 2014, it

had increased to 9.6 million hectares, totaling 67% of secondary vegetation observed in the

baseline sample. Because the baseline sample excludes cells that were �rst deforested in

2004 or later, secondary vegetation recorded in TerraClass for the baseline sample in 2014

totals about 14.3 million hectares, not the 17 million hectares observed for the entire

Brazilian Amazon (see Figure 1).

Table 2 presents mean and standard deviations for variables used in the regression

analysis, including statistics for the Amazon biome for comparison with the benchmark

sample. The sample selection criteria implies higher average cell-level secondary vegetation

coverage and neighborhood alert intensities. This is to be expected considering that cells

that have never been deforested have, by de�nition, no secondary vegetation. Moreover,

statistics for the full Amazon make no distinction between high and low deforestation

pressure zones, whereas the benchmark selection of cells that had seen some deforestation

but still contained primary forest area at baseline likely captures high-risk areas. Hence,

although the benchmark sample might not be representative of the Brazilian Amazon as a
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whole from the perspective of descriptive statistics, it ensures the analysis is focused on

areas that were actual candidates for seeing an impact of neighboring enforcement on local

regeneration. Table 2 also indicates that the sample exhibits relevant cross-sectional

variation.

Finally, descriptive statistics regarding changes in agricultural land use from 2004

through 2014 shed light on where regeneration was happening. In the baseline sample, 65%

of cells where the expansion in secondary vegetation was greater than 10% saw a reduction

in pasture area, and 50% of cells where non-decreasing secondary vegetation area grew saw

this same reduction. In the benchmark sample, the analogous �gures are 45% and 35%,

respectively. Cropland, however, saw a reduction in only a tiny fraction of cells across

samples. These statistics are aligned with o�cial Amazon-wide transitions across

TerraClass categories, which indicate that 33% of pasture and virtually 0% of cropland in

2004 contained regeneration in 2014 (Inpe and Embrapa, 2016b). Thus, the expansion of

secondary vegetation appears to have occurred, in its vast majority, over pasture areas.

4. Empirical Strategy

In this section, we set out a framework that underlies our approach to studying the impact

of environmental law enforcement on tropical regeneration, and discuss our identi�cation

strategy.

Our empirical strategy takes advantage of the spatial structure of the data. We test

whether enforcement in a cell's neighborhood a�ects regeneration outcomes inside the cell. If

the estimated impacts are large, they serve as evidence of policy spillovers, to the extent that

enforcement during the period of interest was directed at primary forest loss, and not aimed at

either promoting or protecting secondary vegetation. Furthermore, they also capture spatial

spillovers, as they capture the e�ect of enforcement in one locality on regeneration outcomes

in another.

The unit of observation is a cell in the Brazilian Amazon biome that experienced strictly

positive deforestation by 2003; that is the baseline sample. Our main equation of interest is:

regenerationi =
∑
n∈∂i

βnenforcementn,i +X ′iθ + εi, (1)

where regenerationi measures tropical forest regrowth in cell i over a certain time period; n is

a neighborhood of cell i, and ∂i is a set of di�erent neighborhoods of i; for each neighborhood

n ∈ ∂i, enforcementn,i measures law enforcement intensity in that neighborhood during

the same time period; Xi is a vector of control variables for location, weather, satellite

visibility, baseline deforested area, and observed conservation policies; and εi is the cell-level

idiosyncratic error.

We consider two measures of forest regeneration, as presented in Section 3.1. The �rst

one is the �non-decreasing secondary vegetation,� which measures the total change in

tropical regrowth as a share of cell area over the period 2004�2014, recalling that it satis�es
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by construction the restriction that once a subregion of the cell (minicell) is classi�ed as

secondary vegetation, it never ceases to be classi�ed as secondary vegetation during that

period. The second measurement is a probability-based measure: it is an indicator that

signals whether secondary vegetation expanded over at least 10% of the cell area during the

decade, 2004�2014. As explained in Section 3.1, we focus on long-term cross-sectional

di�erences in secondary vegetation coverage because short-term variation in satellite-based

regeneration data is prone to measurement error. We consider the decade 2004�2014

because regeneration has been measured only over this period in the TerraClass data.

For each cell, multiple neighborhoods n ∈ δi are formed by concentric rings of increasing

diameter around it (see Appendix A for details.) Larger neighborhoods do not contain smaller

ones, and the cell itself is excluded from the smallest neighborhood. All cells within a given

neighborhood are weighted equally. To establish the catchment area, or reach, of potential

spillover e�ects, we consider concentric rings of diameters 5km, 10km, 20km, 50km, and

100km.13 (Recall that our grid is composed of 900m by 900m square cells.)

The intensity of law enforcement in each neighborhood, enforcementn,i, is calculated as

total number of DETER alerts from 2006 through 2013 as a share of neighborhood area.

A region with greater alert intensity is under greater deforestation pressure, and also more

likely to be targeted by enforcement personnel. While deforestation may push for broader

clearing, inspection by enforcement personnel may deter activities that entail forest loss.

(Recall that there exists no spatially explicit data of inspections on land.) Coe�cients βn
therefore capture the average forest regrowth response to enforcement occurring increasingly

further away. Negative coe�cients βn < 0 indicate that spillovers occur via the displacement

channel, in which demand for cleared land shifts towards regenerated areas, while positive

coe�cients βn > 0 lend support to the deterrence channel, in which previously cleared areas

are abandoned and left to regenerate. The proposed strategy does not determine that alerts

should exclusively capture one or the other; rather, it serves as an empirical test for which

of these opposing forces prevail in practice.

The key identi�cation assumption here is that DETER alerts in neighbor cells do not

correlate with unobservable factors a�ecting regeneration in a given cell. The fact that

Amazon regeneration is invisible to the satellite monitoring system provides support for that

assumption, as it eliminates the risk of there being reverse causality between forest regrowth

in an cell and alerts in its surroundings. Tackling omitted variable bias in this speci�cation

is however less straightforward. As previously discussed, cross-sectional time-di�erence data

is more suitable to capture the response of a time-consuming process like regeneration. This,

however, prevents the use of cell-level �xed e�ects to control for relevant time-invariant

unobservable factors, making estimation more vulnerable to omitted variable bias. The

13In the hot spot policing literature, an intervention's catchment area is that within which spillovers occur
(Braga et al., 1999; Braga and Bond, 2008; Taylor et al., 2011; Blattman et al., 2017). Although there are
di�erent ways to model spillovers, this literature often de�nes catchment areas as one �xed-width ring or
several concentric rings (with increasing radii) around a given region.
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proposed strategy mitigates this by including a host of cell-level controls (discussed in the

next paragraph). Although we cannot directly test whether potential sources of bias have

been fully accounted for in the benchmark speci�cation, the stability of estimated coe�cients

across the gradual inclusion of controls suggests that the analysis' main �ndings do not su�er

from signi�cant bias (see Section 5.1).

Next, we discuss brie�y the controls variables, Xi. They are either time-invariant,

accumulated over the sample decade, or year-speci�c. First, we include municipalities

�xed-e�ects. Second, we add a �exible function of the cell's latitude and longitude

coordinates (a quadratic polynomial). This saturated speci�cation controls for more speci�c

geographic factors not captured by municipality �xed-e�ects such as soil quality,

topography, proximity to water, to roads, and to economic centers. It further adjusts for

local levels of regeneration, and also addresses spatial dependence across cells in the same

region. Weather variables (rainfall and temperature) account for conditions that might

favor or hinder tropical regeneration; the satellite visibility controls for errors caused by

obstructions blocking visual access to the Earth's surface in satellite imagery. We also

include the cell's total area cleared in 2003, as regeneration can only grow in deforested

areas.14 The last set of controls addresses conservation policies that might also contribute

to regeneration. Policy controls include an indicator �agging whether the cell was protected

at any point during the sample decade, as protection promotes isolation from human

interference, and the total number of times the cell itself contained an alert, which serves as

a measure of the intensity of local clearing activity.

5. Empirical Results

This section starts by empirically testing the existence and reach of environmental law

enforcement in a cell's neighborhood on regeneration outcomes inside the cell. It then follows

with robustness checks that use alternative thresholds for de�ning dependent variables and

benchmark samples, as well as tests for additional controls. To shed light on aggregate

impacts, the section closes with counterfactual exercises that explore variations in monitoring

technology.

5.1. Main Results: Policy Spillovers

If environmental law enforcement targeting primary deforestation a�ects tropical

regeneration via either displacement or deterrence mechanisms, enforcement in one locality

should signi�cantly impact regeneration elsewhere. Table 3 presents estimated coe�cients

under the inclusion of increasingly distant neighborhoods to establish the catchment area,

14An alternative speci�cation would not control for initial levels of deforestation in a cell, but instead
calculate the dependent variable as the change in the share of forest regrowth on the deforested cell area,
at the beginning and end of the sample period. However, this leads to endogeneity problems related to the
evolution of deforested areas, as opposed to isolated impacts on regeneration. For these reasons, we opt for
a dependent variables as shares of cell area (not deforested area) and we control for the baseline extent of
deforestation.
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or reach, of this potential spillover e�ect. Column 1 starts with only the nearest 5km

neighborhood, and columns 2 through 5 gradually add regressors for enforcement intensity

in 10km, 20km, 50km, and 100km neighborhoods, respectively. Coe�cients in Panel A

capture the impact of enforcement on the indicator variable �agging whether the 2004

through 2014 di�erence in secondary vegetation area was equal to or greater than one tenth

of cell area, and can therefore be interpreted as di�erences in the probability of seeing

regeneration expand over a minimum cell area threshold. Coe�cients in Panel B capture

the 2004 through 2014 di�erence in non-decreasing secondary vegetation area as a share of

cell area, and can therefore be interpreted as actual area e�ects. All columns include the

full set of cell-level controls: location (municipality, saturated longitude/latitude), weather

(temperature, precipitation), satellite visibility (visual obstructions in satellite imagery in

2004 and 2014), baseline deforested area (accumulated deforestation through 2003), and

observed conservation policy (protected territory status, DETER alerts). Results indicate

that cell regeneration is signi�cantly a�ected by enforcement activity located within 20km,

but not farther. This holds for both dependent variables, which also exhibit fairly stable

coe�cients across columns.

Identi�cation of the proposed empirical strategy ultimately depends on adequately

controlling for potential sources of bias (see Section 4). In light of this, Table 4 reports

estimated coe�cients for an uncontrolled speci�cation (column 1), as well as for the gradual

inclusion of �ve sets of controls: location (column 2), weather (column 3), satellite visibility

(column 4), baseline deforested area (column 5), and observed conservation policy

(column 6). Results show that it is important to control for location, including both

municipality and a saturated function of cell centroid coordinates, as expected.

Reassuringly, coe�cients are largely stable across the inclusion of additional controls,

lending support to the proposed identi�cation strategy. Beyond location controls, the

baseline deforested area control is that which a�ects estimated coe�cients most markedly.

This is consistent with the fact that the extent of existing deforestation at baseline captures

an important aspect of potential regeneration.

Henceforth, the analysis focuses on the speci�cation with the full set of controls (Table 4,

column 6). Estimated coe�cients point towards signi�cant spillovers, with environmental law

enforcement targeting loss of primary vegetation having had a positive impact on tropical

regeneration �more intense enforcement activity in a cell's neighborhood was associated with

both a greater probability of seeing cell-level growth in secondary vegetation coverage, and a

larger expansion in non-decreasing secondary vegetation at the cell level. The spillover e�ect

is sizable. An increase of one standard deviation in the intensity of neighborhood enforcement

increases the probability of cell-level regeneration expansion by 11% of the sample mean, and

increases the area of secondary vegetation inside the cell by 6% of the sample mean.

Figure 3 provides graphical representations of estimated coe�cients for this benchmark

speci�cation: sub-�gure (a) plots point estimates and the associated 95% con�dence interval

for coe�cients from Table 4, Panel A; sub-�gure (b) is analogous for Panel B. The graphs help
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Table 3: Catchment Area for Law Enforcement Spillover on Regeneration

(1) (2) (3) (4) (5)

Panel A: P(∆ secondary vegetation ≥ 0.1 cell area)

alerts 5km 0.0489*** 0.0203*** 0.0216*** 0.0216*** 0.0216***
(0.0032) (0.0041) (0.0041) (0.0041) (0.0041)

alerts 10km 0.0537*** 0.0271*** 0.0272*** 0.0272***
(0.0051) (0.0062) (0.0062) (0.0062)

alerts 20km 0.0532*** 0.0519*** 0.0519***
(0.0072) (0.0079) (0.0080)

alerts 50km 0.0042 0.0045
(0.0115) (0.0121)

alerts 100km -0.0018
(0.0188)

R-squared 0.1208 0.1211 0.1212 0.1212 0.1212

Panel B: ∆ non-decreasing secondary vegetation (% cell area)

alerts 5km 0.0035*** -0.0001 0.0001 0.0001 0.0001
(0.0006) (0.0008) (0.0008) (0.0008) (0.0008)

alerts 10km 0.0068*** 0.0030** 0.0030** 0.0030**
(0.0010) (0.0012) (0.0012) (0.0012)

alerts 20km 0.0076*** 0.0075*** 0.0077***
(0.0014) (0.0016) (0.0016)

alerts 50km 0.0002 -0.0004
(0.0022) (0.0023)

alerts 100km 0.0038
(0.0036)

R-squared 0.1403 0.1404 0.1404 0.1404 0.1405

number of observations 403,191 403,191 403,191 403,191 403,191
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes
observed conservation policy yes yes yes yes yes

Notes: The table reports OLS coe�cients for Equation 1 (Section 4). The dependent variable di�ers across panels: an indicator
for secondary vegetation expansion (d=1 if the 2004 through 2014 di�erence in secondary vegetation coverage ≥ 0.1 of cell
area) in Panel A; non-decreasing secondary vegetation expansion (the 2004 through 2014 di�erence in non-decreasing secondary
vegetation coverage as a share of cell area) in Panel B. Reported independent variables are neighborhood alert intensities (2006
through 2013 total alert area as a share of total neighborhood area). Maximum neighborhood size increases from 5km (column 1)
through 100km (column 5). The no/yes markers in bottom rows indicate the inclusion of the following sets of cell-level controls:
(i) location: municipality, saturated function of cell longitude/latitude; (ii) weather: average annual temperature, total annual
precipitation; (iii) satellite visibility: visual obstructions in satellite imagery in 2004 and 2014; (iv) baseline deforested area:
accumulated deforestation through 2003; and (v) observed conservation policy: protected territory status, alert intensity. The
cross-sectional sample is built from 2004 through 2014 panel data. It includes all 403,191 Amazon biome cells that contained non-
null deforestation through 2003 and at least 50% primary forest cover in 2004. Standard errors are robust to heteroskedasticity.
Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.

illustrate that the estimated spillover e�ects are not linear in distance to law enforcement. For

both probability- and area-based dependent variables, the impact grows in magnitude from
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Table 4: Law Enforcement Spillover on Regeneration

(1) (2) (3) (4) (5) (6)

Panel A: P(∆ secondary vegetation ≥ 0.1 cell area)

alerts 5km 0.0034 0.0136*** 0.0136*** 0.0180*** 0.0282*** 0.0216***
(0.0035) (0.0035) (0.0035) (0.0035) (0.0035) (0.0041)

alerts 10km 0.0188*** 0.0246*** 0.0246*** 0.0252*** 0.0257*** 0.0272***
(0.0063) (0.0061) (0.0061) (0.0061) (0.0061) (0.0062)

alerts 20km 0.0540*** 0.0630*** 0.0628*** 0.0622*** 0.0540*** 0.0519***
(0.0080) (0.0080) (0.0080) (0.0080) (0.0079) (0.0080)

alerts 50km -0.0165 0.0250** 0.0241** 0.0294** 0.0077 0.0045
(0.0110) (0.0121) (0.0121) (0.0121) (0.0120) (0.0121)

alerts 100km 0.0105 0.0085 0.0092 0.0171 0.0024 -0.0018
(0.0108) (0.0189) (0.0191) (0.0190) (0.0188) (0.0188)

R-squared 0.0012 0.0679 0.0679 0.0975 0.1212 0.1212

Panel B: ∆ non-decreasing secondary vegetation (% cell area)

alerts 5km -0.0063*** -0.0058*** -0.0058*** -0.0041*** -0.0021*** 0.0001
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008)

alerts 10km 0.0026** 0.0036*** 0.0036*** 0.0037*** 0.0038*** 0.0030**
(0.0013) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012)

alerts 20km 0.0095*** 0.0095*** 0.0093*** 0.0091*** 0.0075*** 0.0077***
(0.0016) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016)

alerts 50km -0.0012 0.0042* 0.0028 0.0037 -0.0005 -0.0004
(0.0021) (0.0023) (0.0023) (0.0023) (0.0023) (0.0023)

alerts 100km 0.0058*** 0.0039 0.0022 0.0064* 0.0035 0.0038
(0.0020) (0.0036) (0.0036) (0.0036) (0.0036) (0.0036)

R-squared 0.0005 0.0741 0.0744 0.1164 0.1404 0.1405

number of observations 403,191 403,191 403,191 403,191 403,191 403,191
controls
municipality no yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) no yes yes yes yes yes
weather no no yes yes yes yes
satellite visibility no no no yes yes yes
baseline accumulated deforestation no no no no yes yes
observed conservation policy no no no no no yes

Notes: The table reports OLS coe�cients for Equation 1 (Section 4). The dependent variable di�ers across panels: an indicator
for secondary vegetation expansion (d=1 if the 2004 through 2014 di�erence in secondary vegetation coverage ≥ 0.1 of cell
area) in Panel A; non-decreasing secondary vegetation expansion (the 2004 through 2014 di�erence in non-decreasing secondary
vegetation coverage as a share of cell area) in Panel B. Reported independent variables are neighborhood alert intensities (2006
through 2013 total alert area as a share of total neighborhood area). The no/yes markers in bottom rows indicate the inclusion
of the following sets of cell-level controls: (i) location: municipality, saturated function of cell longitude/latitude; (ii) weather:
average annual temperature, total annual precipitation; (iii) satellite visibility: visual obstructions in satellite imagery in 2004
and 2014; (iv) baseline deforested area: accumulated deforestation through 2003; and (v) observed conservation policy: protected
territory status, alert intensity. The cross-sectional sample is built from 2004 through 2014 panel data. It includes all 403,191
Amazon biome cells that contained non-null deforestation through 2003 and at least 50% primary forest cover in 2004. Standard
errors are robust to heteroskedasticity. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.

the smallest 5km neighborhood through 20km, and then drops back to insigni�cance. This

pattern suggests that proximity to recent forest clearing activity might play an important

role in tropical regeneration. Regions that are very close to deforestation alerts are probably

more exposed to human interference and are thus at greater risk of seeing forest disturbances.

Regrowth in these regions is less likely, as captured by the smaller coe�cient for the 5km

neighborhood. As distance to intense clearing activity increases, there is an increase in the
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Figure 3: Law Enforcement Spillover on Regeneration

(a) P(∆ secondary vegetation ≥ 0.1 cell area)
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Notes: The graph plots estimated OLS coe�cients for the benchmark speci�cation (Table 4, column 6). The dependent variable
di�ers across sub-�gures: an indicator for secondary vegetation expansion (d=1 if the 2004 through 2014 di�erence in secondary
vegetation coverage ≥ 0.1 of cell area) in sub-�gure (a); non-decreasing secondary vegetation expansion (the 2004 through 2014
di�erence in non-decreasing secondary vegetation coverage as a share of cell area) in sub-�gure (b). The sample includes all
403,191 Amazon biome cells that contained non-null deforestation through 2003 and at least 50% primary forest cover in 2004.
Solid lines indicate point estimates, and dashed lines indicate 95% con�dence intervals.

probability of seeing secondary vegetation expansion and, notably, also an observed increase

in the actual area of non-decreasing secondary vegetation. This latter result is particularly

important in the sense that it mitigates concerns that probability-based speci�cations are

erroneously capturing an increase in degraded primary forest, which could arguably occur at

higher rates near recent forest clearing activity. Although it seems plausible that very close

proximity to deforestation hot spots would inhibit regeneration, and that tropical regrowth

would gradually increase as abandoned areas are further away from human interference,

results do not currently o�er an explanation for why this spillover e�ect suddenly disappears

beyond 20km. This �nding merits further empirical investigation, both from the perspective
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Figure 4: Density Histogram for Di�erence in Secondary Vegetation Area
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Notes: The �gure plots the density histogram for the 2004 through 2014 di�erence in secondary vegetation extent as a share of
cell area. The vertical lines represent the �ve alternative cuto�s for constructing an indicator that �ags whether this di�erence
met a minimum threshold. The bold red line indicates the benchmark threshold of 10% of cell area; the regular blue lines
indicate the di�erent thresholds used in robustness speci�cations (5%, 7.5%, 12.5%, and 15%).

of understanding the underlying spatial dynamics and from that of identifying speci�cities

in the Amazon empirical setting that could explain the observed phenomenon.

Overall, results support the existence of both policy and spatial spillovers. Findings can

be interpreted as evidence that the deterrence channel is driving this e�ect. The presence of

stricter enforcement regionally inhibits illegal activity, leading potential o�enders to reduce

their demand for deforested land. As cleared areas are abandoned, their exposure to human

interference decreases, and a natural process of regeneration takes place.

5.2. Robustness: Alternative Dependent Variables and Samples

Results presented thus far seem consistent with a regional deterrence e�ect from law

enforcement contributing to the abandonment and regeneration of deforested lands. However,

as the de�nition of the benchmark probability-based dependent variable and sample are based

on set cuto� values, this section tests whether the �ndings are robust to variations in these

thresholds. All robustness speci�cations reproduce the benchmark speci�cation (Table 4,

column 6) and always include the full set of controls. Estimated coe�cients are reported in

both table and plot formats.

To mitigate potential noise in original data, the probability-based dependent variable

is built to capture a minimum mass of secondary vegetation expansion. The benchmark

cuto� value of 10% of cell area sets a fairly stringent requirement for minimum regeneration

expansion. Figure 4 portrays the density histogram for the 2004 through 2014 di�erence

in secondary vegetation extent as a share of cell area, alongside benchmark and robustness

cuto� values for dependent variable construction. The histogram shows that this benchmark

cuto� successfully excludes much of the minor � but still positive � variations in area

growth, which would otherwise count as actual expansion. The �rst robustness test uses
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Table 5: Robustness � Alternative Dependent Variables

(1) (2) (3) (4) (5)
dependent variable cuto�: 5% 7.5% 10% 12.5% 15%

P(∆ secondary vegetation ≥ cell area cuto� value (in column headings)

alerts 5km 0.0285*** 0.0280*** 0.0216*** 0.0201*** 0.0167***
(0.0047) (0.0044) (0.0041) (0.0038) (0.0035)

alerts 10km 0.0278*** 0.0253*** 0.0272*** 0.0196*** 0.0216***
(0.0071) (0.0067) (0.0062) (0.0057) (0.0053)

alerts 20km 0.0636*** 0.0612*** 0.0519*** 0.0528*** 0.0419***
(0.0091) (0.0086) (0.0080) (0.0074) (0.0069)

alerts 50km 0.0015 0.0055 0.0045 -0.0027 0.0016
(0.0138) (0.0130) (0.0121) (0.0111) (0.0103)

alerts 100km 0.0251 0.0151 -0.0018 -0.0242 -0.0115
(0.0218) (0.0204) (0.0188) (0.0173) (0.0158)

R-squared 0.1163 0.1204 0.1212 0.1185 0.1141

number of observations 403,191 403,191 403,191 403,191 403,191
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes
observed conservation policy yes yes yes yes yes

Notes: The table reports OLS coe�cients for Equation 1 (Section 4). The dependent variable is an indicator for secondary
vegetation expansion (d=1 if the 2004 through 2014 di�erence in secondary vegetation coverage ≥ a set cuto� value in terms
of cell area). Each column refers to one such cuto� value: 5% in column 1; 7.5% in column 2; 10% in column 3 (benchmark);
12.5% in column 4; and 15% in column 5. Reported independent variables are neighborhood alert intensities (2006 through
2013 total alert area as a share of total neighborhood area). The no/yes markers in bottom rows indicate the inclusion of the
following sets of cell-level controls: (i) location: municipality, saturated function of cell longitude/latitude; (ii) weather: average
annual temperature, total annual precipitation; (iii) satellite visibility: visual obstructions in satellite imagery in 2004 and 2014;
(iv) baseline deforested area: accumulated deforestation through 2003; and (v) observed conservation policy: protected territory
status, alert intensity. The cross-sectional sample is built from 2004 through 2014 panel data. It includes all 403,191 Amazon
biome cells that contained non-null deforestation through 2003 and at least 50% primary forest cover in 2004. Standard errors
are robust to heteroskedasticity. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.

di�erent cuto� values for de�ning the probability-based dependent variable. Table 5 presents

estimated coe�cients for cuto� values set at 5%, 7.5%, 10% (the benchmark threshold),

12.5%, and 15%. For ease of comparison, Figure 5 plots point estimates and associated 95%

con�dence intervals for each of these values. Results are robust across alternative thresholds,

with the intensity of law enforcement signi�cantly increasing the probability of cell-level

secondary vegetation expansion above these minimum thresholds throughout. The non-

linear relationship, with e�ects increasing through the 20km neighborhood and disappearing

for larger rings, also remains robust.

The second set of robustness checks restores the dependent variable cuto� to its

benchmark value and, instead, explores how results hold across di�erent cuto� values for

sample de�nition. Proximity to remaining primary forest typically favors tropical regrowth

(see Section 4). At the same time, if a cell has seen little deforestation, it actually has a
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Figure 5: Robustness � Alternative Dependent Variables
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(c) cuto� = 10%
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(d) cuto� = 12.5%
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(e) cuto� = 15%
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Notes: The graphs plot estimated OLS coe�cients for robustness speci�cations using alternative cuto� values for the probability-
based dependent variable (Table 5). The dependent variable is an indicator for secondary vegetation expansion (d=1 if the 2004
through 2014 di�erence in secondary vegetation coverage ≥ a set cuto� value in terms of cell area). Each sub-�gure refers to one
such cuto� value: 5% in sub-�gure (a); 7.5% in sub-�gure (b); 10% in sub-�gure (c) (benchmark); 12.5% in sub-�gure (d); and
15% in sub-�gure (e) The sample includes all 403,191 Amazon biome cells that contained non-null deforestation through 2003
and at least 50% primary forest cover in 2004. Solid lines indicate point estimates, and dashed lines indicate 95% con�dence
intervals.

relatively small area upon which secondary forest can grow. Because these e�ects pull in

opposite directions, the benchmark sample comprises cells that had non-null deforestation

through 2003 and contained at least 50% primary forest cover in 2004. Alternative cuto�

values for minimum primary forest cover at baseline could potentially capture cells with
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Table 6: Deforestation and Regeneration Across Alternative Samples

baseline primary forest minimum (share cell area)

10% 25% 50% 75% 90%

raster cell count (900m resolution) 666,563 556,833 403,191 250,122 135,225

deforested area, historical through 2003 (ha) 18,856,377 12,398,219 5,684,454 1,774,051 413,821
2004 secondary vegetation (ha) 4,828,339 3,595,704 1,995,152 772,163 214,229
2004 non-decreasing secondary vegetation (ha) 2,542,601 1,942,371 1,126,561 463,468 135,992

deforested area, historical through 2013 (ha) 26,055,487 18,766,705 10,322,528 4,361,201 1,590,435
2014 secondary vegetation (ha) 7,584,578 5,820,556 3,445,083 1,505,182 523,993
2014 non-decreasing secondary vegetation (ha) 5,245,999 4,045,630 2,399,001 1,037,194 346,579

Notes: The table summarizes deforestation and regeneration areas across alternative samples used in robustness checks. The
baseline sample includes all Amazon biome cells that contained non-null deforestation in 2003; alternative samples are further
restricted to cells that met a minimum threshold for primary forest cover in 2004 (benchmark cuto� of 50%).

di�erent predominant e�ects. The tested values are 10%, 25%, 50% (the benchmark

threshold), 75%, and 90%. Table 6 provides descriptive statistics for deforestation and

regeneration areas across benchmark and robustness samples, as de�ned by minimum

primary forest area at baseline. As expected, the lower the minimum primary forest

requirement, the more accumulated deforestation the sample has seen.

Table 7 presents estimated coe�cients across alternative samples for the

probability-based dependent variable in Panel A, and the area-based dependent variable in

Panel B. Again, Figures 6 and 7 plot point estimates and associated 95% con�dence

intervals for the �ve alternative cuto� values using probability- and area-based dependent

variables, respectively. Results are generally robust across alternative thresholds for both

dependent variables. However, as the minimum primary forest area moves towards the

extremes of the distribution, there is variation in the shape of the distance-based

relationship between law enforcement and regeneration. This points towards important

heterogeneity across cells in the baseline sample. Cells that held less primary vegetation at

baseline might have experienced deforestation at earlier dates and therefore have more

consolidated land use in cleared areas. The signi�cantly negative coe�cients for law

enforcement in the 5km neighborhood for samples that include these consolidated areas

might indicate that, locally, potential o�enders do displace their demand for deforested land

to areas containing secondary vegetation. In contrast, cells with very large primary forest

cover in 2004 have a higher chance of being located in the agricultural expansion frontier

and thus of being intrinsically di�erent in terms of their potential for recent and future

clearings. Despite this heterogeneity, the overall patterns of estimated coe�cients across

alternative samples generally follow the benchmark.

Overall, robustness checks corroborate the interpretation that, when signi�cant, law

enforcement has a positive spillover e�ect on regeneration in near vicinities � at least in

areas that have seemingly not experienced advanced consolidation in use of deforested

lands.
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Table 7: Robustness � Alternative Samples

(1) (2) (3) (4) (5)
sample selection cuto�: 10% 25% 50% 75% 90%

Panel A: P(∆ secondary vegetation ≥ 0.1 cell area)

alerts 5km 0.0039 0.0109*** 0.0216*** 0.0384*** 0.0591***
(0.0033) (0.0036) (0.0041) (0.0050) (0.0064)

alerts 10km 0.0214*** 0.0211*** 0.0272*** 0.0225*** 0.0158*
(0.0050) (0.0054) (0.0062) (0.0074) (0.0092)

alerts 20km 0.0434*** 0.0487*** 0.0519*** 0.0617*** 0.0572***
(0.0064) (0.0070) (0.0080) (0.0095) (0.0116)

alerts 50km -0.0089 -0.0067 0.0045 0.0084 0.0198
(0.0099) (0.0106) (0.0121) (0.0141) (0.0170)

alerts 100km 0.0287* 0.0244 -0.0018 -0.0215 -0.0600**
(0.0157) (0.0168) (0.0188) (0.0214) (0.0242)

R-squared 0.1140 0.1184 0.1212 0.1130 0.0924

Panel B: ∆ non-decreasing secondary vegetation (% cell area)

alerts 5km -0.0041*** -0.0030*** 0.0001 0.0046*** 0.0069***
(0.0007) (0.0007) (0.0008) (0.0010) (0.0013)

alerts 10km 0.0039*** 0.0033*** 0.0030** 0.0004 -0.0002
(0.0011) (0.0011) (0.0012) (0.0015) (0.0019)

alerts 20km 0.0072*** 0.0078*** 0.0077*** 0.0079*** 0.0064***
(0.0014) (0.0015) (0.0016) (0.0018) (0.0024)

alerts 50km -0.0041* -0.0028 -0.0004 0.0006 0.0023
(0.0021) (0.0022) (0.0023) (0.0026) (0.0033)

alerts 100km 0.0079** 0.0064* 0.0038 0.0017 -0.0036
(0.0033) (0.0034) (0.0036) (0.0039) (0.0048)

R-squared 0.1529 0.1534 0.1405 0.1092 0.0828

number of observations 666,563 556,833 403,191 250,122 135,225
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes
observed conservation policy yes yes yes yes yes

Notes: The table reports OLS coe�cients for Equation 1 (Section 4). The dependent variable di�ers across panels: an indicator
for secondary vegetation expansion (d=1 if the 2004 through 2014 di�erence in secondary vegetation coverage ≥ 0.1 of cell
area) in Panel A; non-decreasing secondary vegetation expansion (the 2004 through 2014 di�erence in non-decreasing secondary
vegetation coverage as a share of cell area) in Panel B. The spatial samples are de�ned as Amazon biome cells that contained
non-null deforestation through 2003 and met a minimum cuto� value for primary forest cover in 2004. Each column refers
to one such cuto� value: 10% in column 1; 25% in column 2; 50% in column 3 (benchmark); 75% in column 4; and 90% in
column 5. Reported independent variables are neighborhood alert intensities (2006 through 2013 total alert area as a share of
total neighborhood area). The no/yes markers in bottom rows indicate the inclusion of the following sets of cell-level controls:
(i) location: municipality, saturated function of cell longitude/latitude; (ii) weather: average annual temperature, total annual
precipitation; (iii) satellite visibility: visual obstructions in satellite imagery in 2004 and 2014; (iv) baseline deforested area:
accumulated deforestation through 2003; and (v) observed conservation policy: protected territory status, alert intensity. The
cross-sectional sample is built from 2004 through 2014 panel data. Standard errors are robust to heteroskedasticity. Signi�cance:
*** p<0.01, ** p<0.05, * p<0.10.
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Figure 6: Robustness � Alternative Samples, Probability-Based Outcome

(a) cuto� = 10%

-0.10

-0.05

0.00

0.05

0.10

es
tim

at
ed

 c
oe

ffi
ci

en
ts

5km 10km 20km 50km 100km

neighborhood rings

note: dashed lines indicate 95% confidence intervals

sample cutoff: 10%; depvar cutoff: 10%

Neighboring Alerts and Cell Regeneration: Impact on Probability of Secondary Vegetation Expansion

(b) cuto� = 25%

-0.10

-0.05

0.00

0.05

0.10

es
tim

at
ed

 c
oe

ffi
ci

en
ts

5km 10km 20km 50km 100km

neighborhood rings

note: dashed lines indicate 95% confidence intervals

sample cutoff: 25%; depvar cutoff: 10%

Neighboring Alerts and Cell Regeneration: Impact on Probability of Secondary Vegetation Expansion

(c) cuto� = 50%
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(d) cuto� = 75%
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(e) cuto� = 90%
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Notes: The graphs plot estimated OLS coe�cients for robustness speci�cations using alternative cuto� values for sample
de�nition (Table 7, Panel A). The dependent variable is an indicator for secondary vegetation expansion (d=1 if the 2004
through 2014 di�erence in secondary vegetation coverage ≥ 0.1 of cell area). The samples are de�ned as Amazon biome cells
that contained non-null deforestation through 2003 and met a minimum cuto� value for primary forest cover in 2004. Each
sub-�gure refers to one such cuto� value: 10% in sub-�gure (a); 25% in sub-�gure (b); 50% in sub-�gure (c) (benchmark);
75% in sub-�gure (d); and 90% in sub-�gure (e). Solid lines indicate point estimates, and dashed lines indicate 95% con�dence
intervals.

5.3. Robustness: Additional Controls

The benchmark speci�cation includes cell-level controls for location, weather, satellite

visibility, baseline deforested area, and observed conservation policy. The set of robustness

checks presented in Table 8 takes a closer look at controls. It starts by assessing estimated

27



Figure 7: Robustness � Alternative Samples, Area-Based Outcome
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(c) cuto� = 50%
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(d) cuto� = 75%
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(e) cuto� = 90%
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Notes: The graphs plot estimated OLS coe�cients for robustness speci�cations using alternative cuto� values for sample
de�nition (Table 7, Panel B). The dependent variable is non-decreasing secondary vegetation expansion (the 2004 through 2014
di�erence in non-decreasing secondary vegetation coverage as a share of cell area). The samples are de�ned as Amazon biome
cells that contained non-null deforestation through 2003 and met a minimum cuto� value for primary forest cover in 2004. Each
sub-�gure refers to one such cuto� value: 10% in sub-�gure (a); 25% in sub-�gure (b); 50% in sub-�gure (c) (benchmark);
75% in sub-�gure (d); and 90% in sub-�gure (e). Solid lines indicate point estimates, and dashed lines indicate 95% con�dence
intervals.

coe�cients for the most endogenous set of benchmark controls, observed conservation policy

(column 1), and then tests the robustness of results to the inclusion of additional controls

that capture the cell's distance (in 100 kilometers) to the following: nearest road (column 2);

nearest paved road (column 3); nearest municipality with population ≥ 20,000 (column 4);
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and nearest waterway (column 5).

Results for the benchmark speci�cation indicate that estimated coe�cients for the policy

controls �ip signs across Table 8 panels. While protection reduces and local enforcement

increases the probability of secondary vegetation expansion in a cell, they have the opposite

e�ect on the extent of non-decreasing secondary vegetation. This can be explained by the

inherent di�erence between these two outcome variables. As the probability-based dependent

variable does not distinguish between remaining primary vegetation and actual secondary

vegetation (see Section 4), estimated coe�cients might mix e�ects that pull in opposite

directions � protection is expected to increase regeneration, but decrease degradation and

deforestation; greater alert intensity inside a cell indicates more intense clearing activity at

the local level, which is expected to limit regrowth capacity but also capture a greater risk

of degradation and deforestation. Interpreting these coe�cients for the probability-based

dependent variable can therefore be misleading. Thus, results for the area-based dependent

variable are expected to more accurately capture the impact of these conservation policies on

regeneration. Indeed, coe�cients for protection are positive, although insigni�cant, and those

for alert intensity are negative. This reinforces the idea that isolation favors regeneration,

and that close proximity to deforestation activity signi�cantly curbs regeneration.

The remaining columns of Table 8 include controls for the cell's distance to transport

infrastructure, more populated municipalities, or waterways. Each of these could be

interpreted as a measure of the cell's exposure to human interference. Estimated coe�cients

for neighborhood enforcement remain highly stable in magnitude and signi�cance across

speci�cations for both dependent variables. These �ndings lend further support to the

benchmark speci�cation, whose results do not appear to be driven by omitted variables.

5.4. Counterfactual Exercises: Monitoring Capacity

The evidence shows that regional law enforcement signi�cantly promoted regeneration at

the cell level. Yet, interpreting the magnitude of this e�ect when looking at a raster cell is

not straightforward. To shed light on how these e�ects map onto aggregate sample impacts,

if at all, this section presents two counterfactual exercises. In each exercise, the benchmark

speci�cation (Table 4, column 6) is used to predict outcomes under a di�erent hypothetical

scenario, and the total variation in non-decreasing secondary vegetation is calculated by

adding predicted areas across sample cells. Instead of looking at two outcomes of interest, as

in the regression analyses, counterfactual exercises are restricted to areas of non-decreasing

secondary vegetation. This implies that counterfactual estimates are conservative to the

extent that they only account for variation in a subset of observed regeneration.

The �rst counterfactual scenario builds on the idea of enhanced monitoring of forest

clearing activity. Satellite-based measuring (PRODES) and monitoring (DETER) systems

have di�erent spatial resolutions (see Appendices B.1 and B.2). While DETER provides

high-frequency information with low resolution, PRODES only generates annual data but at

higher resolution. Thus, it is to be expected that the detected areas of forest disturbance di�er

29



Table 8: Robustness � Additional Controls

(1) (2) (3) (4) (5)
benchmark all roads paved roads large pop water

Panel A: P(secondary vegetation expansion >= 10% of cell area)

alerts 5km 0.0216*** 0.0218*** 0.0220*** 0.0216*** 0.0224***
(0.0041) (0.0041) (0.0041) (0.0041) (0.0041)

alerts 10km 0.0272*** 0.0276*** 0.0276*** 0.0272*** 0.0284***
(0.0062) (0.0062) (0.0062) (0.0062) (0.0062)

alerts 20km 0.0519*** 0.0523*** 0.0521*** 0.0519*** 0.0568***
(0.0080) (0.0080) (0.0080) (0.0080) (0.0080)

alerts 50km 0.0045 0.0004 0.0014 0.0049 0.0057
(0.0121) (0.0121) (0.0121) (0.0121) (0.0121)

alerts 100km -0.0018 -0.0119 -0.0132 -0.0020 0.0021
(0.0188) (0.0189) (0.0190) (0.0188) (0.0188)

d=1 if protected -0.0086*** -0.0070*** -0.0063*** -0.0085*** -0.0066***
(0.0018) (0.0019) (0.0019) (0.0018) (0.0018)

alert intensity 0.0041*** 0.0040*** 0.0041*** 0.0041*** 0.0040***
(0.0015) (0.0015) (0.0015) (0.0015) (0.0015)

distance to header variable -0.0131*** -0.0105*** -0.0070 -0.0352***
(0.0022) (0.0015) (0.0044) (0.0024)

R-squared 0.1212 0.1213 0.1213 0.1212 0.1217

Panel B: non-decreasing secondary vegetation expansion (cell share)

alerts 5km 0.0001 0.0002 0.0002 0.0001 0.0002
(0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

alerts 10km 0.0030** 0.0030** 0.0030** 0.0030** 0.0031**
(0.0012) (0.0012) (0.0012) (0.0012) (0.0012)

alerts 20km 0.0077*** 0.0078*** 0.0077*** 0.0077*** 0.0084***
(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)

alerts 50km -0.0004 -0.0014 -0.0009 -0.0004 -0.0002
(0.0023) (0.0023) (0.0023) (0.0023) (0.0023)

alerts 100km 0.0038 0.0014 0.0019 0.0038 0.0044
(0.0036) (0.0036) (0.0036) (0.0036) (0.0036)

d=1 if protected 0.0002 0.0006 0.0006 0.0002 0.0005
(0.0003) (0.0004) (0.0004) (0.0003) (0.0004)

alert intensity -0.0015*** -0.0015*** -0.0015*** -0.0015*** -0.0015***
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

distance to header variable -0.0031*** -0.0018*** 0.0002 -0.0054***
(0.0004) (0.0003) (0.0009) (0.0005)

R-squared 0.1405 0.1405 0.1405 0.1405 0.1407

number of observations 403,191 403,191 403,191 403,191 403,191
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes

Notes: The table reports OLS coe�cients for Equation 1 (Section 4). The dependent variable di�ers across panels: an indicator
for secondary vegetation expansion (d=1 if the 2004 through 2014 di�erence in secondary vegetation coverage ≥ 0.1 of cell
area) in Panel A; non-decreasing secondary vegetation expansion (the 2004 through 2014 di�erence in non-decreasing secondary
vegetation coverage as a share of cell area) in Panel B. Reported independent variables are neighborhood alert intensities (2006
through 2013 total alert area as a share of total neighborhood area) and select controls. The benchmark speci�cation (column 1)
reproduces that of Table 4, column 6, but with reported coe�cients for observed policy controls. Additional controls capture
distance (in 100 kilometers) to the following: nearest road (column 2); nearest paved road (column 3); nearest municipality
with population ≥ 20,000 (column 4); and nearest waterway (column 5), as indicated in column headers. The no/yes markers
in bottom rows indicate the inclusion of the following sets of cell-level controls: (i) location: municipality, saturated function
of cell longitude/latitude; (ii) weather: average annual temperature, total annual precipitation; (iii) satellite visibility: visual
obstructions in satellite imagery in 2004 and 2014; and (iv) baseline deforested area: accumulated deforestation through 2003.
The cross-sectional sample is built from 2004 through 2014 panel data. It includes all 403,191 Amazon biome cells that
contained non-null deforestation through 2003 and at least 50% primary forest cover in 2004. Standard errors are robust to
heteroskedasticity. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 9: Recorded Areas in Monitoring and Measuring Systems

year
detected area detected area detection share
DETER (ha) PRODES (ha) DETER/PRODES

2006 491,457 1,091,857 45%
2007 816,888 1,150,637 71%
2008 438,735 1,336,129 33%
2009 224,019 643,061 35%
2010 266,439 635,751 42%
2011 204,710 574,122 36%
2012 277,758 446,873 62%
2013 305,376 542,452 56%

total 3,025,380 6,420,882 47%

Notes: The table presents total area recorded for the Brazilian Legal Amazon in deforestation monitoring (DETER) and
measuring (PRODES) systems, as well as the ratio between these areas.

across systems, with PRODES systematically recording a larger total area of forest loss.15

Table 9 shows that this was, in fact, the case. Despite large variability across years (likely due

to variation in satellite visibility), the area recorded as DETER alerts is, on average, less than

half that of PRODES. In light of this, the �rst hypothetical scenario boosts the monitoring

system by allowing it to detect every deforestation patch detected in the measuring system. In

practice, this means that every 900m raster cell that had held non-null PRODES deforestation

increment from 2006 through 2013 also held a DETER deforestation alert.

Figure 8a plots the di�erence in the total area of non-decreasing secondary vegetation in

counterfactual and observed scenarios. Each data point in the graph refers to a di�erent

sample, as de�ned by the minimum baseline primary forest cover. Counterfactual totals are

systematically positive across samples, indicating that enhanced monitoring would have

increased the area of non-decreasing secondary vegetation in the Amazon. For the

benchmark sample, this increase totals about 280 thousand hectares and is statistically

signi�cant. Samples with lower thresholds for primary forest have roughly equal point

estimates, but larger con�dence intervals. This suggests that the cells with greater primary

forest cover at baseline in these samples are driving the results. This �nding appears to be

aligned with the discussion that greater sample heterogeneity contributes to greater

variability in outcomes under less stringent minimum primary forest requirements. As these

requirements increase, the counterfactual point estimate decreases in size, although it

remains substantial. To better contextualize this magnitude, Figures 8b and 8c present

counterfactual area di�erences as shares of observed deforested and regenerated areas,

15Another potential source of di�erence in observed areas across systems is that PRODES only detects clear-
cut deforestation, while DETER is capable of detecting forest degradation. In isolation, this could result in
a larger observed area of disturbance via DETER. However, this potential advantage is likely undermined by
DETER's signi�cantly poorer resolution � during the sample period, DETER could only detect disturbances
larger than 25ha, while PRODES detected clearings larger than 6.25ha.
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Figure 8: Counterfactual Exercise � Enhanced Monitoring System
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(c) as share of regenerated area
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Notes: The �gure illustrates the di�erence in total area of non-decreasing secondary vegetation in the counterfactual and
observed scenarios. The counterfactual is a hypothetical scenario in which the deforestation monitoring system detected and
issued alerts for all forest clearings that were recorded in the deforestation measuring system (2006 through 2013 increment).
Alternative samples, plotted along the horizontal axis, are de�ned as Amazon biome cells that contained non-null deforestation
through 2003 and met a minimum cuto� (axis) value de�ned in terms of primary forest cover in 2004. Solid lines indicate
counterfactual estimates, and dashed lines indicate 95% con�dence intervals. Results are shown as: total sample area in sub-
�gure (a); share of observed 2014 sample deforestation in sub-�gure (b); and share of observed 2014 sample regeneration, as
captured by the extent of non-decreasing secondary vegetation, in sub-�gure (c). Counterfactual scenarios are built using results
from the benchmark speci�cation (Table 4, column 6) and setting the alert area equal to the observed deforested area (see
Table 9).

respectively. Under the hypothetically enhanced monitoring system, non-decreasing

secondary vegetation in the benchmark sample would have expanded over an additional 3%

of total deforested area. This represents growth of more than 10% of recorded

non-decreasing secondary vegetation area. For samples with greater minimum primary

forest areas, these shares increase substantially, but so do con�dence intervals.

This exercise is particularly informative considering that Brazil recently adopted a new
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Figure 9: Counterfactual Exercise � No Monitoring System

-200

-100

0

100

200

300

400

500

600

ar
ea

 (1
,0

00
 h

a)

0 10 20 30 40 50 60 70 80 90 100

baseline minimum primary forest cover (% cell area)

note: dashed lines indicate 95% confidence intervals

Estimated Difference in Non-decreasing Secondary Vegetation Area

Counterfactual Scenario: No Monitoring System

Notes: The �gure illustrates the di�erence in total area of non-decreasing secondary vegetation in the observed and estimated
counterfactual scenarios. The counterfactual is a hypothetical scenario in which there was no deforestation monitoring system
(no DETER alerts). Alternative samples, plotted along the horizontal axis, are de�ned as Amazon biome cells that contained
non-null deforestation through 2003 and met a minimum cuto� value (axis value) de�ned in terms of primary forest cover in
2004. Solid lines indicate counterfactual estimates, and dashed lines indicate 95% con�dence intervals. Results are shown as
total sample area. Counterfactual scenarios are built using results from the benchmark speci�cation (Table 4, column 6) and
setting the alert area equal to zero.

monitoring system, DETER-B, which can detect areas of forest disturbance as small as 1ha

and provide more detailed information on activity within these areas (Diniz et al., 2015) �

an improvement that, by far, outperforms the enhancement proposed in the counterfactual

scenario. Results suggest that this new system could make signi�cant contributions to

promote Amazon regeneration.

The second, and last, counterfactual exercise proposes a diametrically opposite

hypothetical scenario. In it, there is no monitoring system to issue alerts and target law

enforcement, such that alert intensities in all neighborhoods are set to zero. As before,

Figure 9 plots the di�erence in the total area of non-decreasing secondary vegetation, but

now the counterfactual estimate is deducted from observed totals. Although point estimates

are positive across all samples, suggesting that the existence of the monitoring system

promoted expansion in non-decreasing secondary vegetation, they are also systematically

insigni�cant.

6. Final Remarks

This paper's analysis has policy implications that are both relevant and timely. From

an Amazon conservation perspective, it indicates that potentially substantial policy impacts

remained unaccounted for in PPCDAm e�ectiveness evaluations. Incorporating these impacts

into policy design could signi�cantly a�ect targeting and cost-bene�t considerations.
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Moreover, from a broader perspective, results are particularly salient in light of growing

awareness regarding the need for global action to reconcile environmental and development

goals. Central to this e�ort is the restoration of ecological integrity in degraded and deforested

areas, due to its potential to mitigate climate change while improving human well-being.

The emergence of international initiatives like the Bonn Challenge, which aims to restore 150

million hectares by 2020 and 350 million hectares by 2030 worldwide, attests to the mounting

interest of the international community in promoting restoration at scale. Governmental

commitments undertaken in the form of Nationally Determined Contributions (NDC) under

the UNFCCC signal countries' recognition of the part they play in the pursuit of a shared

interest. Brazil's NDC sets a target of reducing greenhouse gas emissions to more than

35% below its 2005 levels by 2030, partly by restoring/reforesting 12 million hectares of

forest countrywide. As an endeavor of unprecedented magnitude in the country, restoration

at scale poses signi�cant practical challenges. Knowledge regarding what contributed to the

remarkable expansion of Amazon secondary vegetation, particularly in a context of heightened

vulnerability for regrowth, could catalyze regeneration and thereby help Brazil achieve its

environmental commitments.
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Appendices

In this Online Appendix, we provide further information about data sources and the

construction of key variables used in the empirical analysis.

A. Spatial Setup

A raster is a matrix data structure that represents a regular grid of cells. For a given

variable of interest taking on a range of possible values, each raster cell can hold one, and only

one, value. Georeferenced rasters contain spatial information that associate it with a well

de�ned region of the world's surface: (i) the coordinate reference system, which determines

the origin and set of spatial axes to be used with geographical coordinates; (ii) the spatial

extent, which de�nes the minimum and maximum limits of the area covered by the raster;

and (iii) the spatial resolution, which sets raster cell size and thereby, given (i) and (ii),

determines the number of rows/columns in a raster. In georeferenced rasters, each cell holds

a speci�c position in space, as marked by the coordinates of that cell's centroid. This enables

the recovery of spatial relationships, such as the distance between two cells. Moreover, it

allows for the tracking of the same cell across di�erent rasters, as long as all share the same

coordinate reference system, extent, and spatial resolution.

The coordinate reference system used for dataset construction is the unprojected 1969

South American Datum (SAD69). All mentions of metric distances are metric equivalences

of measures actually in degrees. The spatial resolution is set at 900m, such that the raster

unit is a square raster cell with an area of 81ha. Construction of variables stated as shares of

cell area are based on georeferenced rasters with the higher 30m resolution. Typically, each of

the 900m cells contains 900 of the 30m minicells, though the existence of spatial boundaries

may result in lower minicell count in frontier cells. Shares are always calculated in terms

of total cell-speci�c minicell count. Each minicell is associated with its respective parent

cell using an indexation algorithm. Figure A1 depicts cells, minicells, and the relationship

between them. Cell neighborhoods refer to the areas covered by concentric rings of increasing

diameter around the cell. Larger neighborhoods do not contain smaller ones, and the cell itself

is excluded from the smallest neighborhood. Figure A2 illustrates raster cell neighborhoods.

All cells within a given neighborhood are weighed equally, despite variation in distance to

and direction from the central cell.

As explained in the main text, the area we consider in the analysis is the Amazon biome,

which is de�ned based on biophysical and ecological criteria. The Brazilian Amazon biome

is entirely contained within the Legal Amazon, which in turn is a geopolitical administrative

subdivision that encompasses the following states: Acre, Amapá, Amazonas, Mato Grosso,

Pará, Rondônia, Roraima, and Tocantins, as well as the western part of the Maranhão state.

The Amazon biome is entirely contained within the Legal Amazon, but is de�ned based on

biophysical and ecological criteria. IBGE provides vector data indicating spatial boundaries

for both. When rasterized at the 900m resolution, the Brazilian Legal Amazon and Amazon

biome territories contain about 6.3 and 5.2 million cells, respectively.
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Figure A1: Raster Grid, Cell, and Minicell

900m

900m

30m

30m

Notes: The �gure illustrates the basic structure of the raster data used in the empirical analyses. The grid is composed of
900m by 900m square cells, which, in turn, subdivides into 30m by 30m square minicells. The cells and minicells in the �gure
are not drawn to scale.

Figure A2: Raster Cell Neighborhoods

Notes: The �gure illustrates raster cell neighborhoods, as determined by concentric rings of increasing diameter around the
cell. Larger neighborhoods do not contain smaller ones, and the cell itself is excluded from the smallest neighborhood.

B. Data Sources

The country has used satellite imagery to map and quantify Amazon deforested area

since the late 1980s. Today, it operates three di�erent remote sensing-based programs for the

Amazon. The programs interact, but each serves a speci�c goal: (i) measure annual tropical

deforestation; (ii) monitor tropical forest disturbance; and (iii) classify land use in deforested

areas, including secondary vegetation.

B.1. Measuring Deforestation

The Project for Monitoring Deforestation in the Legal Amazon (PRODES), established

by the Brazilian National Institute for Space Research (Inpe) in 1988, provides georeferenced

data on annual tropical deforested area. The system detects forest clearings by comparing, for

any given area, satellite imagery from years t−1 and t to detect changes in land cover. When

an area is identi�ed as deforested in satellite imagery, it is classi�ed as part of that year's

deforestation increment; as of the following year, it is taken as accumulated deforestation

and is not revisited. Accumulated deforestation is known as the �PRODES mask�. The top

panel in Figure B1 presents a conceptual illustration of how PRODES works: in year 1, the

system maps and records deforested area; in year 2, the system no longer looks for clearings
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Figure B1: Satellite Systems for Detecting Forest Disturbances

1

YEAR 1 YEAR 2 YEAR 3 YEAR 4

Notes: The �gure presents a conceptual illustration of how satellite-based PRODES and DETER systems operate at an annual
basis. The top panel refers to PRODES: in year 1, the system maps and records deforested area; in year 2, the system no longer
looks for clearings inside this area, but maps and records new patches of cleared forest outside it; as of year 3, the process repeats
itself. PRODES data is annual. The bottom panel refers to DETER: in year 1, the system takes input from PRODES (region
A); in year 2, the system looks for signs of disturbance in forest areas outside the PRODES mask and issues deforestation hot
spot alerts accordingly; at the end of year 2, PRODES will either con�rm or reject deforested status for these areas, and only
those that are con�rmed are incorporated into the PRODES mask; in year 3 and beyond, the process repeats itself, with DETER
always looking for signs of forest disturbance in forest areas outside the mask. DETER alerts are forwarded to law enforcement
daily, but data is made publicly available in monthly aggregates. Both PRODES and DETER are built to only capture loss of
primary tropical vegetation.

inside this area, but maps and records new patches of cleared forest outside it; in year 3 and

beyond, this process repeats itself, with total deforested area through the previous year being

incorporated into the PRODES mask and the system looking for new deforestation outside

this mask. This setup has two important consequences. First, PRODES only detects the

clearing of primary vegetation (forest that has never been cut down). Second, and relatedly,

it is an incremental system, such that, for each year of data, it provides information on

newly deforested areas, but never reclassi�es previously cleared areas. This implies that the

PRODES mask is, by construction, non-decreasing in area.

The system classi�es land cover throughout the full extent of the Brazilian Legal

Amazon into �ve categories of mutually-exclusive classes: forest (standing primary

vegetation), deforestation, bodies of water, non-forest (areas that have never been covered

by tropical vegetation), and residue (a minor residual category). Only tropical forest areas

can ever be deforested, as PRODES is not technically �t to compute the clearing of other

types of vegetation. Although the Brazilian Legal Amazon is mostly covered by tropical

forest, some areas, particularly those outside the Amazon biome, are naturally covered by

savanna-like cerrado vegetation � these areas are classi�ed as non-forest in PRODES and

are not accounted for in o�cial Amazon deforestation statistics. Because clouds, shadows

cast by clouds, and smoke from �res obstruct visibility in satellite imagery, some areas

might be classi�ed into a sixth category: non-observable areas. Actual land cover in these

areas is only classi�ed once the visual obstruction clears.

42



PRODES was created, and is still used, to calculate the Amazon-wide deforestation rate.

While the deforestation increment measures total visible deforested area, the deforestation

rate accounts for an estimate of cleared forest areas that were partially or entirely blocked

from view during remote sensing. The rate thereby attempts to more closely capture the

speed at which the Amazon was cleared, while the increment re�ects when the cleared area

became known to authorities.16 Only the deforestation increment is made available as spatial

data.

PRODES uses imagery from Landsat class satellites with a spatial resolution of 20 to

30m. When the system was implemented, technical limitations restricted detection to

deforestation patches larger than 6.25ha. Today, although smaller patches are detected,

processed, and forwarded to environmental authorities, public data are restricted to patches

larger than 6.25ha to preserve comparability across the time series. In addition, the system

only detects areas that have been clear-cut, so selective logging and forest degradation are

not included. Deforested area measured by PRODES has been validated both internally,

via Inpe-led �eld-based accuracy evaluations (Adami et al., 2017), and externally, via

third-party independent interpretation of satellite imagery (Souza Jr. et al., 2013;

Turubanova et al., 2018). Cross-validations only refer to clear-cut deforestation, as

PRODES does not detect tropical degradation. As expected, analyses that account for

degradation estimate larger areas of a�ected forest (Souza Jr. et al., 2013; Tyukavina et al.,

2017).

Inpe annually releases updates to the PRODES series in vector format, such that year t

data contain a spatial history of all areas deforested through that year and their associated

year of deforestation. However, deforestation years do not refer to calendar years. To

minimize cloud cover and thereby maximize visibility of the Earth's surface, satellite images

from the Amazon dry season are typically used. Hence, for a given year t, PRODES

measures deforestation that happened from August of the previous year (t − 1) through

July of that year (t). The datasets in this analysis are built to �t this August-through-July

window. For simplicity, we refer to this time frame simply as �year� throughout the

analyses.

PRODES vector data are currently available through 2016, but the historical spatial

series is only comparable through 2014. This is because, in 2015, Inpe implemented a mask

shift � a non-linear spatial displacement to adjust for inaccuracies that accumulated over

time. Unfortunately, during this procedure, the full history of clearings prior to 2013 was

collapsed and all areas cleared until then became aggregated under the 2012 year reference.

As restricting the sample to the post-2012 period would result in the loss of seven years of law

enforcement data, the analyses use pre-shift PRODES data. This sets 2014 as the sample's

�nal year.

16See Inpe (2013) for a detailed account of PRODES methodology and deforestation rate estimation details.
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B.2. Monitoring Deforestation and Degradation

DETER is a satellite-based system, developed and operated by INPE, that provides near

real-time identi�cation of forest clearing activity. Like PRODES, DETER compares current

satellite images with earlier ones, scanning for changes in forest land cover. Upon detection,

potential forest disturbances map onto georeferenced alerts signaling areas of forest clearing

activity. These alerts are sent to the environmental law enforcement authority and serve as

the basis for targeting Amazon law enforcement.

DETER builds on the PRODES system to the extent that it only scans for forest

disturbances outside the PRODES mask. The bottom panel in Figure B1 illustrates the

procedure: DETER needs year 1 input from PRODES (deforested area in year 1, labeled A

in the �gure); in year 2, the system looks for signs of disturbance in forest areas outside the

PRODES mask and issues deforestation hot spot alerts accordingly; at the end of year 2,

PRODES will either con�rm or reject deforested status for these areas, and only those that

are con�rmed are incorporated into the PRODES mask; in year 3 and beyond, the process

repeats itself, with DETER always looking for signs of forest disturbance in forest areas

outside the mask.

DETER covers the full extent of the Brazilian Legal Amazon, but only detects signs of

disturbance in areas classi�ed as forest in PRODES; again, cerrado areas are not included.

It originally used images from the MODIS sensor on the Terra satellite, which has a spatial

resolution of 250m. The system can therefore only detect forest clearings larger than 25ha.

This relatively poor spatial resolution was compensated by both increased temporal frequency

(the satellite revisits any given area within the Brazilian Legal Amazon daily) and the ability

to detect not only clear-cut deforestation, but also forest degradation. Since 2015, INPE has

operated DETER alongside DETER-B. The new system also serves to issue georeferenced

alerts for recent forest degradation and deforestation activity, but it detects changes in land

cover in patches larger than 1ha, albeit at lower temporal frequency (Diniz et al., 2015).

Despite its high frequency, DETER data is aggregated at a monthly basis for public

release in vector format. DETER was implemented in 2004, but remained in experimental

mode through mid-2005. Thus, although a few months of data are available for 2004 and

early 2005, consistent remote sensing data on DETER alerts only starts in the second half

of 2005. The �rst year of DETER data is therefore set at 2006 throughout the empirical

analyses.

Monthly vector data on georeferenced alerts are rasterized at the 900m resolution, such

that a cell will take on a value of 1 if it contains an alert and a value of 0 otherwise. Missing

months in vector data indicate that no alerts were issued by DETER in that month. And

there are a few occurrences of biweekly data, particularly in earlier DETER years. For a

month with two deforestation alert datasets, we overlay the biweekly data to calculate total

alert area for that month, as per INPE's recommendation. In practice, the rasterization

algorithm assigns value 1 to a cell only if its centroid is contained within a polygon in the

vector data. Because deforestation alerts can be as small as 25ha and the raster cells have an
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area of 81ha, running the algorithm on the raw vector resulted in the loss of a large amount of

alerts. We therefore created a 1km bu�er around all alerts and only then rasterized the alert-

plus-bu�er vector data, thereby ensuring that if a cell fell within 1km of an alert, it would

be assigned value 1 during rasterization. For simplicity, we refer to this alert-plus-bu�er area

simply as the alert area throughout the analysis. Alert intensity is calculated as the total

number of alert cells over the 2006 through 2013 period as a share of total neighborhood cell

count.

B.3. Mapping Land Use in Deforested Areas

As PRODES and DETER are land cover classi�cation systems, they provide information

on whether natural phenomena covering the Earth's surface have undergone change. Yet, once

an area is deforested, whatever happens within that area is regarded as land use. TerraClass

Amazônia, a joint e�ort between INPE and the Brazilian Enterprise for Agricultural Research

(Embrapa), provides land use data for all deforested areas throughout the Brazilian Legal

Amazon. The system identi�es eleven di�erent land use categories: four types of pasture

(grassy, shrubby, exposed soil, under regeneration); cropland (predominantly annual crops);

secondary vegetation (detailed in what follows); reforestation (commercial forests of exotic

species); urban; mining; mosaic of uses (where no single use can be discerned); and others (a

residual category).17 If clouds, shadows cast by clouds, or smoke from �res obstruct visibility

in imagery, the blocked area is classi�ed as unobservable. For a given year, TerraClass

provides current land use data within the full extent of the PRODES mask; that is, within

deforested area accumulated through the previous year. It is thus an accumulated, not an

incremental, dataset that allows for the identi�cation of transitions across di�erent land uses

over time.

TerraClass de�nes secondary vegetation as areas that were once clear-cut, but currently

contain trees and/or shrubs. It includes neither pasture under regeneration, nor commercial

reforestation. This category therefore captures tropical regeneration. (Figure 2 in the main

text shows secondary vegetation mapped in each Amazon state in 2014.) Although land use

data are now available for 2004 and biannually from 2008 through 2014, they were not

processed and released in chronological order. TerraClass 2008 was the �rst to be released,

but only in 2012. Data for 2010 and 2012 followed, and data for 2004 and 2014 were

simultaneously released in mid-2016.

As TerraClass uses the same Landsat imagery as PRODES, it has a spatial resolution of

30m. The data are publicly released in both vector and raster formats at the same original

spatial resolution, such that there is no loss of information from operating in either format.18

In light of this, and because vector data for secondary vegetation are extremely heavy and

computationally demanding, datasets for this analysis use TerraClass raster data.

17See Almeida et al. (2016) for a full description of TerraClass classes and methodology.
18This is not the case for PRODES, for which raster data are available, but only at lower spatial resolution.
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C. Measuring Secondary Vegetation

As explained in the main text, the classi�cation of secondary vegetation is empirically

challenging for two reasons. First, because data on secondary vegetation are built from

interpretation of satellite imagery, regrowth must be visible in the image to be detected,

which requires that any given deforested area must accumulate su�cient natural biomass to

be classi�ed as secondary vegetation, a process that may extend over decades (Alves et al.,

1997; Aide et al., 2000; Guariguata and Ostertag, 2001; Chazdon, 2008). It is therefore likely

that areas that are already under regeneration may take several years to show up in satellite-

based land use classi�cation systems, while short-term time-series variation in regeneration

data are likely to su�er from serious measurement errors.

Second, Brazil's land use classi�cation system cannot distinguish degraded primary

forest from actual secondary vegetation. This is best understood with the help of a

simpli�ed illustration of how on-the-ground realities map onto satellite imagery-based land

use categories. Figure C1 represents scenarios for a given area under correct classi�cation

and misclassi�cation of secondary vegetation. It indicates how this area is classi�ed under

PRODES and TerraClass in each of these scenarios over time. Consider a forested area in

the correct classi�cation scenario (Figure C1a). While left intact (through year t− 1 in this

example), tropical vegetation is classi�ed as forest in PRODES. In year t, it su�ers clear-cut

deforestation and falls under the deforestation increment PRODES category. Starting in

year t + 1, the area is part of the PRODES mask, and is henceforth classi�ed in the

TerraClass system. Suppose the area deforested in year t was used as pasture for one year

after cleared and then abandoned, allowing regrowth. TerraClass therefore classi�es the

area as pasture in year t + 1 and as secondary vegetation from year t + 2 onwards. This is

taken to be correct classi�cation of tropical regeneration, because it captures vegetation

that has grown in areas that were once clear-cut.

Now take an alternative scenario in which the forested area is not left intact, but rather

su�ers degradation over time through year t− 1 (Figure C1b). However, because PRODES

only detects clear-cut deforestation, early and medium stages of degradation are classi�ed

as forest in PRODES. The crucial di�erence in this scenario is that, in year t, the area has

not su�ered clear-cut deforestation. Instead, it has been su�ciently degraded and has lost

enough biomass to look like a deforested area in satellite imagery, at which point it is

classi�ed as deforestation increment in PRODES. Again, from year t + 1 onward, PRODES

incorporates this area into its mask, making it available for classi�cation under TerraClass.

In year t + 1, because TerraClass detects vegetation in the deforested area, the remaining

(but degraded) primary forest is classi�ed as secondary vegetation. Indeed, this is

consistent with the TerraClass de�nition for secondary vegetation category � areas that

were once clear-cut, but currently contain trees and/or shrubs. The misclassi�cation in

TerraClass occurs due to the fact that the area was never clear-cut, thereby violating the

assumption that whatever vegetation found in it is tropical regrowth. This is regarded as a

misclassi�cation in quantifying regeneration, because it can overestimate the area covered
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Figure C1: Satellite-Based Classi�cation of Regeneration

(a) correct classi�cation: actual secondary vegetation
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(b) misclassi�cation: degraded primary vegetation
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Notes: The �gure represents alternative scenarios for correct classi�cation and misclassi�cation of secondary vegetation in
satellite imagery. It provides both PRODES and TerraClass categories for a given area over time in each of these scenarios.
Panel (a) portrays correct classi�cation. While left intact (through year t− 1 in this example), tropical vegetation is classi�ed
as forest in PRODES. In year t, it su�ers clear-cut deforestation and falls under the deforestation increment PRODES category.
Starting in year t + 1, the area is part of the PRODES mask, and is henceforth classi�ed in the TerraClass system. Suppose
the area deforested in year t was used as pasture for one year after cleared and then abandoned, allowing regrowth. TerraClass
therefore classi�es the area as pasture in year t + 1 and as secondary vegetation from year t + 2 onwards. In this case, the
secondary vegetation classi�cation actually captures vegetation that has grown in areas that were once clear-cut � it is therefore
correctly classi�ed. Panel (b) portrays misclassi�cation. The vegetation is not left intact, but rather su�ers degradation over
time through year t − 1. Yet, because PRODES only detects clear-cut deforestation, early and medium stages of degradation
are classi�ed as forest in PRODES through year t − 1. In year t, when it has been su�ciently degraded and has lost enough
biomass to look like a deforested area in satellite imagery, it is classi�ed as deforestation increment in PRODES. Again, from
year t + 1 onward, PRODES incorporates this area into its mask, making it available for classi�cation under TerraClass. In
year t+1, because TerraClass detects vegetation in the deforested area, the remaining (but degraded) primary forest is classi�ed
as secondary vegetation. This is consistent with the TerraClass de�nition for secondary vegetation category � areas that were
once clear-cut, but currently contain trees and/or shrubs. The misclassi�cation in TerraClass occurs due to the fact that the
area was never clear-cut, thereby violating the assumption that whatever vegetation found in it is tropical regrowth.

by secondary vegetation. This is particularly concerning in light of the increasing relevance

of tropical degradation, as compared to clear-cut deforestation, in the Brazilian Amazon

(Souza Jr. et al., 2013; Rappaport et al., 2018).

In light of this, we draw on the biophysical nature of forest processes to propose an

alternative measure of secondary vegetation that is arguably less vulnerable to

misclassi�cation errors. While an area under regeneration typically sees an increase in

biomass over time, one under degradation sees the opposite trend. It is thus likely that, as

degradation continues, a given area will eventually cease to look like secondary vegetation

and will be classi�ed in TerraClass according to some other use, like pasture. In

Figure C1b, this is shown starting in year t + 2. Considering that the permanence of

secondary vegetation status di�ers across scenarios of correct versus incorrect classi�cation,
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Figure C2: Non-decreasing Secondary Vegetation Classi�cation Algorithm
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TerraClass category
minicell classified as non-decreasing 

secondary vegetation in … ?

2004 2008 2010 2012 2014 2004 2014

sec. veg. sec. veg. sec. veg. sec. veg. sec. veg. yes yes

sec. veg. sec. veg. unobserved unobserved sec. veg. yes yes

forest forest sec. veg. sec. veg. sec. veg. no yes

forest sec. veg. unobserved unobserved sec. veg. no yes

forest sec. veg. unobserved unobserved unobserved no yes

pasture pasture sec. veg. sec. veg. sec. veg. no yes

sec. veg. sec. veg. pasture pasture pasture no no

sec. veg. sec. veg. pasture pasture sec. veg. no no

forest pasture sec. veg. sec. veg. pasture no no

forest sec. veg. unobserved unobserved pasture no no

forest forest forest forest sec. veg. no no

Notes: The �gure presents possible land use classi�cation histories at the raster minicell level over time and indicates how the
decision algorithm classi�es non-decreasing secondary vegetation minicell status in 2004 and 2014 based on this history. Land
use categories refer to the 30m raster minicell. �Sec. veg.� stands for secondary vegetation; pasture is used here merely as
an example of a non-regeneration land use category that would be visible in satellite imagery, but the algorithm applies to all
observable non-regeneration categories.

we use it as the basis for building a more conservative measure of tropical regeneration,

which we call �non-decreasing secondary vegetation�. This measure only considers an area

as containing tropical regrowth if it meets two criteria: (i) once classi�ed as secondary

vegetation, it never ceases to be secondary vegetation; and (ii) it has been classi�ed as

secondary vegetation for at least two consecutive TerraClass years. The �rst criteria aims

at avoiding the misclassi�cation depicted in Figure C1b. The only exception to this rule is

for areas in which satellite visibility is compromised by visual obstructions, as these do not

indicate a change in land use, but a technical limitation in the imagery interpretation

system. Thus, unobservable is the only non-regeneration TerraClass category that does not

break secondary vegetation permanence. The second criteria sets a stringent �lter for

regeneration by ignoring all areas that have no panel history of regeneration status and can

therefore not be duly assessed in terms of permanence. Non-decreasing secondary

vegetation areas are regarded as such from the �rst time they appear as secondary

vegetation. The classi�cation algorithm detects permanence by using the full (�ve-year)

TerraClass time series to construct indicator variables that capture whether the 30m raster

minicell contained non-decreasing secondary vegetation in 2004 and 2014.19 Figure C2

summarizes the history-based decision algorithm.

19The age of secondary vegetation could also be used as a measure of the likelihood of an area classi�ed
as secondary vegetation being actual regeneration versus degraded primary vegetation. To the best of our
knowledge, these data are not available for the Brazilian Amazon.
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Although the assessment of forest regrowth looks at the 2004 through 2014

cross-sectional di�erence in the extent of secondary vegetation, classi�cation of

non-decreasing secondary vegetation is based on high-resolution raster minicell data

spanning the complete TerraClass historical series, and not just sample beginning and end

data points. Moreover, because temporal permanence is the key classi�cation criteria,

non-decreasing secondary vegetation likely excludes fallow lands containing tropical

regrowth. This increases the likelihood that the proposed measure capture secondary

vegetation that grows as a result of the abandonment of deforested areas, and not as part of

an agricultural production cycle (Vieira et al., 2003; Perz and Walker, 2002). Hence, if a

minicell is classi�ed as non-decreasing secondary vegetation, there is a greater chance that

it actually does contain tropical regeneration. In this sense, non-decreasing secondary

vegetation measure is a more stringent and, thus, more conservative de�nition for

regeneration.
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