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a b s t r a c t 

In single-agent dynamic discrete choice models, counterfactual 
behavior is identified for some (but not all) counterfactuals de- 
spite the fact that the models themselves are under-identified. 
We review recent results on the identification of counterfac- 
tuals in dynamic discrete choice settings. When it comes to 
dynamic discrete games, we argue that counterfactuals are 
not identified, even when analogous counterfactuals of single- 
agent models are identified. Using the example of a duopoly 
entry game, we explain why strategic considerations under- 
mine the identification of counterfactual equilibria in dynamic 
games. 

© 2016 Elsevier B.V. All rights reserved. 
1. Introduction 

Although the main reason researchers estimate structural econometric models is to 
perform counterfactual simulations, we understand much less about the identification of 

counterfactuals than we do about the identification of econometric models themselves. 
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ometimes, counterfactuals of interest may be fully identified even when the associated
odel is not. This is the case for dynamic discrete choice (DDC) models, which have been

pplied in a variety of contexts (e.g. labor markets, firm dynamics, health choices). DDC
odels are typically underidentified, meaning that researchers must make restrictions on

he model in order to estimate it. However, the non-identification of DDC mo dels do es
ot necessarily imply the non-identification of counterfactual behavior. In this paper, we
eview recent results exploring when counterfactual behaviour of dynamic discrete choice
odels are identified. While such results have been developed for the case of single-

gent models, they have strong implications for the identification of counterfactuals of
ynamic games. We present an important implication in the context of a dynamic duopoly
ntry game and explain why strategic considerations can undermine the identification of
ounterfactual equilibria in games. 

Rust (1994) , Magnac and Thesmar (2002) , and Pesendorfer and Schmidt-Dengler
2008) showed that DDC models, under very general assumptions, are nonparametri-
ally not identified: there are always many different utility functions that can rationalize
bserved choice behavior. Given this fact, Heckman and Navarro (2007) claim that “the
ntire dynamic discrete choice project thus appears to be without empirical content,
nd the evidence from it at the whim of investigator choices about functional forms of
stimating equations and application of ad hoc exclusion restrictions.”

Whimsically imposed or not, the restrictions that allow researchers to estimate a DDC
odel might not matter for the counterfactuals the researchers are ultimately interested

n. Counterfactuals typically involve a change in utility functions, in the process govern-
ng state transitions, and/or in the set of actions and states available to agents. While
here are always many utility functions consistent with the observed data, if each of those
tility functions generates the same behavioral response to a given counterfactual, then
hat counterfactual can be said to be identified. In other words, identified counterfac-
uals are not sensitive to restrictions that are necessary to identify the model. Recent
ork has shown that some (but not all) counterfactuals of single-agent dynamic models
re indeed identified. Aguirregabiria (2010) , Norets and Tang (2014) , Aguirregabiria and
uzuki (2014) , and Arcidiacono and Miller (2015) consider some examples of counter-
actuals. Kalouptsidi et al. (2016) ) (henceforth KSS) offer instead a full characterization
necessary and sufficient conditions) of a very broad class of counterfactuals encompass-
ng the previous examples. In particular, our results apply to counterfactuals which may
imultaneously alter payoffs and transitions, as well as the choice set and state space.
e consider models with nonparametric payoffs as well as commonly used parametric
odels, and we consider the identification of welfare changes. 
After reviewing some of these recent results, we investigate how they extend to dy-

amic games. We consider a duopoly entry game and the firms’ counterfactual response
o a change in entry costs. While the change in question produces an identified response
n a single-agent context (or if the behavior of one of the firms was held fixed), strate-
ic considerations prevent the identification of the firms’ responses. In other words, the
ounterfactual equilibrium is sensitive to necessary identifying restrictions imposed on the
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game’s payoff function. Lack of identification is not the result of multiplicity of equilibria; 
a counterfactual equilibrium for one payoff function consistent with observed data will 
not be an equilibrium for another payoff function also consistent with the observed data. 
Given this result, we conjecture that strategic considerations imply that all practically 

relevant counterfactuals of dynamic discrete games will fall into a class of counterfactuals 
that are not identified. 

The rest of the paper is organized as follows. Section 2 provides an overview of the
literature on the identification of payoffs and counterfactuals in dynamic discrete choice 
models. Section 3 considers the example of a duopoly entry game. 

2. Identification in dynamic single agent models 

In this section, we review the standard dynamic discrete choice modeling framework 

and summarize some recent results on the identification of counterfactuals in single-agent 
models. 

In the standard dynamic discrete choice framework, an agent i chooses one action 

a it from the finite set A = { 1 , . . . , A } in each p erio d t ∈ { 1 , 2 , . . . } . The current payoff
depends on the state variables ( x it , ε it ), where x it is observed by the econometrician and
ε it is not. We assume x it ∈ X = { x 1 , . . . , X } , X < ∞ ; while ε it = ( ε it ( 1 ) , . . . , ε it ( A ) ) is
i.i.d. across agents and time and has joint distribution G . The transition distribution 

function for ( x it , ε it ) factors as 

F ( x it +1 , ε it +1 | a it , x it , ε it ) = F ( x it +1 | a it , x it ) G ( ε it +1 ) , 

and the current utility function is given by 

u ( a, x it , ε it ) = u ( a, x it ) + ε it ( a ) . 

Agent i chooses a sequence of actions to maximize the expected discounted payoff. Given
these assumptions, agent i ’s Bellman equation is 

V ( x it , ε it ) = max 

a ∈A 

{ u ( a, x it ) + ε it ( a ) + βE [ V ( x it +1 , ε it +1 ) | a, x it ] } , 

where β ∈ (0, 1) is the discount factor. The conditional choice probabilities (CCPs), 
p a ( x it ), are given by the probability of choosing action a ∈ A at time t conditional on
x it ∈ X . 

Researchers typically have access to panel data on actions and states. From such data, 
it is straightforward to construct estimates of CCPs and transition probabilities; e.g., 
with sufficiently rich data, simple frequency estimates suffice. Studies on identification 

typically take for granted that CCPs and transition probabilities are known and then con-
sider what can be inferred about the model primitives ( u , β, G ) or endogenous functions
of the model primitives, such as counterfactual CCPs and welfare. 
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As previously noted, Rust (1994) , Magnac and Thesmar (2002) , and Pesendorfer and
chmidt-Dengler (2008) showed that payoffs in single-agent dynamic discrete choice mod-
ls are nonparametrically not identified, even when ( β, G ) is known. In particular, Magnac
nd Thesmar (2002) characterized the degree of underidentification: the set of restric-
ions a DDC model imposes on data results in a system of equations that has infinitely
any solutions. Indeed, since the researcher only has ( A − 1 ) ×X linearly independent
CP estimates to identify the A × X elements in the utility function, the dimension of

he set of solutions of the system is given by the cardinality of the state space, X . 
In order to obtain point identification of u , one needs to add extra restrictions. Com-

on extra assumptions include (combinations of) parametric functional forms, exclusion
estrictions, and “normalizations.” Parametric assumptions reduce the number of param-
ters to be identified and impose some shape restrictions; e.g., payoffs that are linear in
bservable states. Exclusion restrictions assume that some payoffs do not depend on all
tate variables; e.g., firm entry and exit costs are often assumed state invariant. “Nor-
alizations” fix the payoff of some action in some states at some known value. Typically,

he payoff of the action we have least information about is set to zero; usually referred
o as the “outside option.” Note that “normalizing” the utility of one action to some
re-specified level is different from imposing a normalization in the traditional sense. For
nstance, if we take action J and set u J equal to a zero vector, we implicitly assume that
he payoffs to action J do not depend on the state – that is a substantive assumption,
nd not something that can be arrived at through a positive transformation of the utility
unction. 

Nonidentification of flow utilities seemingly poses serious challenges for counterfactual
nalysis. If different restrictions imposed on the model can lead to different utility func-
ions which are both equally consistent with the observed data, then it might seem that
he output of DDC models is necessarily sensitive to restrictions imposed by researchers.
owever, both of these models might agree in how the agents respond to a given policy

ntervention. If all models consistent with the observed data agree on the response to
 given counterfactual change, then we can say that the counterfactual in question is
dentified. 

In KSS, we offer a full characterization (necessary and sufficient conditions) of a broad
lass of counterfactuals, laying out conditions that can be checked in practice to verify
hether an arbitrary counterfactual is identified. Our results apply to counterfactuals

nvolving both changes in utility functions and transition matrices, nonlinear transforma-
ions of the payoff function, changes in the set of actions from the choice set as well as
n the set of state variables. We also consider the identification of welfare changes and
ow the class of identified counterfactuals expands when the utility function has popular
arametric restrictions. 
To b e sp ecific, counterfactuals consist of transformations of mo del primitives, notably

he set of actions ( A ) and states ( X ), the utility functions ( u ), and the transition
robabilities ( F ). A counterfactual that changes payoffs u to ˜ u , is described by a
nown function, h : R 

AX → R 

AX (so that ˜ u = h ( u ) ). A counterfactual can also change
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transitions F to ˜ F . For the purposes of this paper, we consider only the following
two results from the literature ( Aguirregabiria, 2010; Aguirregabiria and Suzuki, 2014; 
Kalouptsidi et al., 2016; Norets and Tang, 2014 ), which are useful to understand
identification of counterfactuals in the context of dynamic games. 

Result 1. In a single-agent setting, if ˜ F = F and ˜ u = u + g, where g is a known vector,
then counterfactual choice probabilities ˜ p are identified. 

In interpreting Result 1 , it is important to note that the change in utility g is flexible in
one way, but quite limited in another. It is flexible in the sense that it allows for changes
in utility to be of any finite size and conditioned arbitrarily on actions and states. This
seemingly allows for arbitrary changes in the payoff function, but g is not allowed to
depend on u ; thus, the researcher must be able to specify g before estimating the model.
KSS denote this type of hypothetical change an “additive transfers” counterfactual. 

Result 2. In a single-agent setting, if a counterfactual changes the transition process from
F to ˜ F , but the utility function is unchanged, then counterfactual choice probabilities p̃
are not identified unless 

( I − βF a ) ( I − βF J ) −1 −
(
I − β ˜ F a 

)(
I − β ˜ F J 

)−1 
= 0 (1) 

for all a � = J , where F a ∈ R 

X×X is the transition matrix conditional on action a , and I
is an identity matrix of size X . 

Result 2 says that counterfactuals in which the transition matrix changes are typi- 
cally not identified except in knife-edge cases. Together, Results 1 and 2 say that some
counterfactuals are identified and some are not, but there exists many more possible 
counterfactuals that these results do not cover. The reader is referred to KSS for other
types of counterfactuals. 

Result 2 is even more pessimistic when extended to dynamic games. In a dynamic 
game, the transition process faced by an individual agent typically depends on the be-
havior of other agents – i.e., the transition matrices of dynamic games are not merely
exogenous objects. Thus, even if a counterfactual of a dynamic game does not involve a
change in the primitives of the transition process, it will typically involve changes in the
transition process faced by individual agents. Section 3 expands on this idea in greater
detail. 

3. A dynamic entry game 

In this section, we consider a simple example to help explain why counterfactual 
equilibria of dynamic games are likely non-identified even when analogous counterfactuals 
of single-agent models are identified. 
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Consider a duopoly entry game with two players indexed by i = A, B. In each p erio d
 , the players simultaneously cho ose whether to b e active in the market ( a it = 1 ) or
ot ( a it = 0 ). Associated with each player is a state variable which equals the player’s
ction in the previous p erio d: s it = a i,t −1 . The state of the game is simply the pair of
tates, x t = ( s At , s Bt ) , which is common knowledge. The game is symmetric, and player
 receives payoffs which may depend on her own action, on her opponent’s action and on
he state variables. The current payoff function is given by 

u ( a it , a −it , x it , ε it ) = u ( a it , a −it , x it ) + ε it ( a it ) 

here ε it = ( ε it ( 0 ) , ε it ( 1 ) ) is private information of agent i , i.i.d. across agents and time,
nd has a joint normal distribution with variance 1/2. 1 We assume ε it is not observed
y the econometrician and its joint distribution is common knowledge among players.
o abstract away from problems related to multiplicity of equilibria, we impose a se-

ection rule that always picks symmetric equilibria. Pesendorfer and Schmidt-Dengler
2008) show that a symmetric Markov perfect equilibrium exists in this context (see their
orollary 1). 
Absent extra restrictions, there are sixteen different combinations of ( a i , a −i , s i , s −i )

nd therefore the payoff function’s parameter space is potentially sixteen-dimensional.
owever, an equilibrium of the game will only involve up to eight linearly independent

hoice probabilities (one for each player and state). As previously mentioned, we con-
ider only symmetric equilibria for simplicity, and symmetric equilibria only involve four
inearly independent choice probabilities. Thus, in a symmetric equilibrium we are only
ble to identify four parameters. Whether we focus on symmetric equilibria or not, we
eed extra restrictions on the payoff function to identify the model . 
The question of interest in this note however focuses on whether we need restrictions

n order to identify counterfactual behavior . Perhaps any restrictions we might make in
rder to identify the model will lead to the same results when we simulate counterfactual
 ehavior; i.e., p erhaps some counterfactuals are identified even though the model is not.
As a baseline case, we consider the following payoff function: 

u i ( a i , a −i , s i , s −i ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if a i = 0 , s i = 0 
φ if a i = 0 , s i = 1 
π1 − c if a i = 1 , s i = 0 , a −i = 0 
π1 if a i = 1 , s i = 1 , a −i = 0 
π2 − c if a i = 1 , s i = 0 , a −i = 1 
π2 if a i = 1 , s i = 1 , a −i = 1 

(2)

f the firm stays out of the market, it receives zero. When it enters, it pays an entry cost
 and receives either the monopolist profit π1 or the duopoly profit π2 . If the firm was
1 This game was introduced by Pesendorfer and Schmidt-Dengler (2008) . Equivalently, we can ignore the 
 it (1) shock and assume ε it (0) is standard normal as they do. 
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Table 1 
Entry game: payoff functions. 

π( a i , a i , s i , s −i ) Model 1 Model 2 

( a i , a −i ) = ( a i , a −i ) = 

s i s −i (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 1) (1, 0) (1, 1) 

0 0 0 0 1 −1.4 0 0 0 −0.506 
0 1 0 0 1 −1.4 0 0 0 −1.11 
1 0 0.1 0.1 1.2 −1.2 0 0 0 1.51 
1 1 0.1 0.1 1.2 −1.2 0 0 0 −0.399 

Table 2 
Entry game: choice probabilities. 

P (active| s i , s i ) Baseline CF – fixed opponent CF – equilibrium 

Model 1 Model 2 Model 1 Model 2 
s i s −i 

0 0 0.576 0.527 0.527 0.634 0.516 
0 1 0.305 0.257 0.257 0.207 0.243 
1 0 0.842 0.875 0.875 0.983 0.836 
1 1 0.595 0.643 0.643 0.692 0.612 

 

 

 

 

 

 

already active, it receives either π1 or π2 . Finally, if the firm decides to exit, it receives
the scrap value φ. Note that the above payoff function represents a restrictive parame- 
terization. In principle, payoffs when a player exits ( a it = 0 and s it = 1 ) might depend
on the other player’s behavior and/or state variable. The baseline parameterization is 
φ = . 1 , c = . 2 , π1 = 1 . 2 , and π2 = −1 . 2 . 

We refer to the model with the payoff function described above as Model 1 (the true
model); Table 1 specifies the payoffs for each combination of actions and states. Table 2
describes a symmetric equilibrium for this model. In this equilibrium, each player enters 
with probability .576 when both players were not active in the previous p erio d. Each
player remains active with probability .595 when both players competed in the previous 
p erio d. When only one player was active in the previous p erio d, the incumb ent remains
active with probability .842 and the other firm enters with probability .305. 

Given the under-identification of the model, there are many other payoff functions 
that could rationalize this baseline equilibrium. One such alternative is Model 2, where 
we restrict all payoffs to be zero except when ( a i , a −i ) = ( 1 , 1 ) : 

u i ( a i , a −i , s i , s −i ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if a i = 0 or a −i = 0 
π00 if a i = 1 , a −i = 1 , s i = 0 , s −i = 0 
π01 if a i = 1 , a −i = 1 , s i = 0 , s −i = 1 
π10 if a i = 1 , a −i = 1 , s i = 1 , s −i = 0 
π11 if a i = 1 , a −i = 1 , s i = 1 , s −i = 1 

(3) 
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able 1 also describes parameter values for (3) which rationalize the baseline equilibrium.
ne may view these values as the parameter estimates that an econometrician would
btain by imposing specification (3) when using a data set generated by Model 1. 

While the baseline equilibrium is an equilibrium of both Models 1 and 2, it is not
bvious a priori whether the equilibria of the two models will coincide when the payoff
unctions are changed. We consider a counterfactual in which entry costs are increased
y .25 (in levels, not in proportional terms). Formally, we consider the following trans-
ormation of the payoff function for each of the two models: 

˜ u ( a i , a −i , s i , s −i ) = 

{ 

u ( a i , a −i , s i , s −i ) − . 25 if a i = 1 , s i = 0 
u ( a i , a −i , s i , s −i ) otherwise 

he counterfactual payoffs ˜ u increase the costs of entry relative to the original payoffs
 . In the notation of the previous section: ˜ u = u + g , where g ( a i , a −i , s i , s −i ) = −. 25
or a i = 1 , s i = 0 , and g ( a i , a −i , s i , s −i ) = 0 otherwise. This is an “additional transfers”
ounterfactual. 

Before considering equilibria of the counterfactual games, it is helpful to first consider
ow an individual player’s best response would change if her payoff function changed
rom u to ˜ u and her opp onent’s b ehavior remained fixed in the baseline equilibrium
trategy. These b est resp onses are describ ed by the “CF – fixed opponent” columns of
able 2 . They are identical for the two models – i.e., the different ways of rationalizing
he baseline equilibrium are equivalent when we consider these interim best responses.
his should not be surprising. As Result 1 tells us, additive transfers counterfactuals of
ingle-agent models are identified, and this exercise could be described as an additive
ransfer of a single agent model. We can always look at the problem of solving for an
ndividual player’s b est resp onse as a single-agent problem, and if we hold the opponent’s
trategy fixed, then the only modification is the change in the payoff function from u to˜  . The counterfactual ˜ u here involves only an additive transfer change, so the results
rom single-agent models apply, and we have identified interim best responses. 

However, as the final two columns of Table 2 describe, the identification of interim best
esp onses do es not lead to identification of the counterfactual equilibrium. In the new
quilibrium, the change from u to ˜ u is no longer the only change in player i ’s problem;
layer i must also consider the change in her opponent’s strategy, and this amounts
o a change in the transition process for the dynamic problem the player is solving. As
esult 2 tells us, counterfactuals involving changed transition functions are not identified
nless the very stringent condition (1) holds. Satisfying (1) in practice, however, seems
nlikely. 
For the particular parameterizations (2) and (3) , Table 2 shows that, before strate-

ic considerations are taken into account, Models 1 and 2 agree that increasing entry
osts decreases the rate of entry regardless of whether the opponent is active or not.
educed entry makes incumbent monopolists even more likely to remain active than in

he baseline, for the risk of ending up in a duopoly is reduced. 



370 M. Kalouptsidi et al. / International Journal of Industrial Organization 50 (2017) 362–371 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the counterfactual predictions of the two models differ in the
symmetric equilibrium. Under the true mo del (Mo del 1), it is not clear ex-antewhether
increased entry costs will increase or decrease the probability of entry when both firms are
inactive in the previous p erio d. In the simulation, the appeal of becoming a monopolist
increases the rate of entry when ( s i , s −i ) = 0 . For Model 2, however, it decreases the rate
of entry. 

This is not the only difference observed in the counterfactual equilibrium. The iden- 
tifying restrictions imposed by Model 2 result in a payoff function in which the firm 

earns the highest profits when both firms are active today but the opponent was inactive
before. In this case, being a monopolist is not so appealing. The smaller appeal of being
a monopolist lowers the rate at which incumbents stay active and also lowers further the
rate at which firms enter when no firms are active. In summary, the counterfactual equi-
librium under Model 2 is qualitatively very different from the counterfactual equilibrium 

under the (true) Model 1. 
A formal investigation of the conditions under which counterfactuals are identified in 

dynamic games can be based on extensions of KSS. However, the set of conditions in KSS
dep end on prop erties of the transition pro cess in b oth the baseline and counterfactual
settings. For a single-agent model, checking the conditions amounts to checking primitives 
of the mo del b ecause the transition process can be taken as a primitive. But for a dynamic
game, the transition process is typically an equilibrium object, and therefore checking 
whether the conditions are satisfied is not simply a property of the primitives of the
model. KSS’s conditions cannot be checked for a dynamic game without first solving for
counterfactual equilibria. 

Yet, absent a formal investigation, the dynamic entry model suggests a reasonable 
conjecture. Counterfactuals of dynamic games typically involve strategic considerations, 
meaning that firms face changes in opp onents’ exp ected b ehavior. Changes in opp onents’
exp ected b ehavior imply that the transition pro cess faced by a given agent changes. This
interpretation of Result 2 suggests that counterfactuals of dynamic games are generically 

not identified. 
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