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This Supplemental Material consists of the following sections: Section E provides several useful examples

of linear restrictions that are commonly employed in applied work. Section F presents detailed calculations

in the firm entry/exit problem – our running example. Section G extends our main results to allow for

unknown discount factor β and distribution G. Section H shows how to calculate the gradient of the

function ϕ when it involves counterfactual average effects based on ergodic distributions of the state

variables. And Section I discusses the replication of Das, Roberts, and Tybout (2007).

E Examples of Linear Restrictions

In this section, we provide several useful examples of linear restrictions, Reqπ = req and Riqπ ≤ riq,

that are commonly employed in applied work. For ease of exposition, we only consider restrictions on πJ

(unless otherwise stated). Recall that Req = [Req
−J , R

eq
J ] and Riq = [Riq

−J , R
iq
J ].

Example 1. (Compact Payoffs) Assume δlJ ≤ πJ ≤ δuJ . Then R
iq
−J = 0, Riq

J = [−I, I]′ , riq = [−δl′J , δu′J ]′,

and the number of inequalities is m = 2X.

Example 2. (Exclusion Restriction I) Assume πJ (x1) = πJ (x2). Then, R
eqπ = r, with Req

−J = 0,

Req
J =

[
1 −1 0 · · · 0

]
,

and req = 0. There is only one equality restriction: d = 1.

Example 3. (Exclusion Restriction II) Suppose we split the state space in x = (k,w), where k ∈

K = {1, ...,K} and w ∈ W = {1, ...,W}, with K,W finite. Assume πJ does not depend on w, i.e.,
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πJ (k, 1) = πJ (k, 2) = ... = πJ (k,W ) for all k. When K = 2, W = 3, we obtain Req
−J = 0,

Req
J =


1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

 ,

and req = 0. The number of linear equalities is now d = K (W − 1) < KW = X.

Example 4. (Linear-in-Parameters Payoffs) Assume that π = zγ, where z is a known matrix of dimension

(A+ 1)X×ηγ , γ is a column vector ηγ×1, and we assume (A+ 1)X ≥ ηγ . Decompose the long (A+ 1)X

vector π into an upper part πu and a lower part πl, and define zu and zl similarly. Then, πu = zuγ and

πl = zlγ. Suppose the decomposition is such that zu has full column rank. Then, from the first equality

we obtain: γ =
(
z′uzu

)−1
z′uπu. Substitution in the second equality gives πl = zl

(
z′uzu

)−1
z′uπu. Therefore,

[zl
(
z′uzu

)−1
z′u , −I]π = 0. I.e.,

Req =
[
zl
(
z′uzu

)−1
z′u , −I

]
,

and req = 0. The number of linear equalities is d = X − ηγ .

Example 5. (Monotonicity) Without loss, arrange x in increasing order. Assume πJ increases with x.

Then πJ (1) ≤ πJ (2) ≤ ... ≤ πJ (X). In this case, take m = X − 1, riq = 0, Riq
−J = 0, and

Riq
J =


1 −1 0 · · · 0

0 1 −1 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · 1 −1

 .

Example 6. (Concavity) Arrange x in increasing order, take equidistant points for x. Assume πJ is

concave in x. Then πJ (xi−1) − 2πJ (xi) + πJ (xi+1) ≤ 0, for all i = 2, ..., X − 1. In this case, take

m = X − 2, riq = 0, Riq
−J = 0, and

Riq
J =


1 −2 1 0 · · · 0

0 1 −2 1 0 · · ·

· · · · · · · · · · · · · · · · · ·

0 0 · · · 1 −2 1

 .

Example 7. (Smoothness). Suppose πJ ≥ 0 and assume πJ (x) is Lipschitz continuous in x. Then,
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πJ (xi)− πJ (xi+1) ≤ L |xi − xi+1|, for some known constant L <∞, for all x. In this case, Riq
−J = 0,

Riq
J =


1 −1 0 · · · 0

0 1 −1 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · 1 −1

 ,

riq is the vector with elements L |xi − xi+1|, and m = X − 2. Note that we can impose higher order

restrictions on the variation of the function π as well. This may be important when we discretize a

continuous state space and π is a smooth function of states.

Example 8. (Action-Monotonicity) Take the binary model with actions A = {a, J}, and assume that

πa (x) ≥ πJ (x) for some x. Then Riq
a is the vector with −1 at position x and zeros elsewhere. Similarly,

Riq
J is the vector with 1 at position x and zero elsewhere. I.e.,

Riqπ =
[
0 · · · 0 −1 0 · · · 0 1 0 · · · 0

]πa
πJ

 ≤ 0,

where riq = 0 and m = 1.

Example 9. (Supermodularity) Take the binary model again. Without loss, arrange x in increasing

order. Assume the increasing differences for xi+1 ≥ xi:

πa (xi+1)− πa (xi) ≥ πJ (xi+1)− πJ (xi) .

Then, take

Riq =



1 −1 0 0 · · · 0

0 1 −1 0 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 0 1 −1︸ ︷︷ ︸
=Riq

a

...

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 0 −1 1︸ ︷︷ ︸
=Riq

J


,

and riq = 0, with m = X − 1 inequalities.

F Firm Dynamic Entry/Exit Model

We now provide explicit formulas for the main equations and outcomes of interest presented in the paper

in the context of the firm entry/exit model. By revisiting the numerical example shown in the main text

we focus on the role that each individual model restriction plays in shaping the payoff identified set ΠI .
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In the example, the transition matrix of the state variables x = (k,w) becomes Fa = F k
a ⊗ Fw, where

F k
a is the 2× 2 transition matrix for k, with (l, j) elements Pr[kit+1 = j|ait = l, kit] that equal one when

j = l, and zero otherwise; and ⊗ is the Kronecker product. Specifically,

F0 =

1 0

1 0

⊗ Fw =

Fw 0

Fw 0

 , F1 =

0 1

0 1

⊗ Fw =

0 Fw

0 Fw

 . (F1)

The payoff vectors are the same as in (23) in the main paper and are rewritten below for convenience,

π0 =

 oo

s

 , π1 =
 vp− fc− ec

vp− fc

 .
The vector of CCPs is composed of pa (k,w). To simplify notation, we let pa (k) be a vector of

dimension W (i.e., we fix k and run over w) so that p =
(
p′0 (0) , p

′
1 (0) , p

′
0 (1) , p

′
1 (1)

)′
.

Consider the main equality constraint resulting from the DDC framework and take J = 0 (i.e., equation

(2) presented in the main text)

π1 =M1π0 + b1(p). (F2)

This equation indicates that X = KW = 2W parameters need to be specified for point-identification.

Thus, if π0 is known, then π1 is recovered. Indeed, let us first compute M1, defined in (3). Here, we have

M1 =

I −βFw

0 I − βFw

I − βFw 0

−βFw I

−1

,

where the inverse in the above expression is easily verified to be (I − βFw)−1 0

(I − βFw)−1 βFw I


and therefore,

M1 =

I + βFw −βFw

βFw I − βFw

 .
Next, note that in the logit model, b1 (p) =M1ψ0(p)− ψ1(p) becomes (see equation (4)):

b1 (p) =

ln p1 (0)
ln p1 (1)

−

I + βFw −βFw

βFw I − βFw

ln p0 (0)
ln p0 (1)

 ,
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given that ψa(p(x)) = κ− ln pa(x), where κ is the Euler constant. Thus equation (F2) becomes vp− fc− ec

vp− fc

 =

I + βFw −βFw

βFw I − βFw

 oo

s

+ b1 (p) . (F3)

Note now that if π0 is known, namely both the scrap vector s and oo are given, they suffice to identify

π1, but they do not suffice to separate the 3W parameters, vp, fc, and ec. Suppose in addition that vp is

known. Then, we rewrite π1 separating the unknowns ec and fc:

π1 =

 −I2 −I2
0 −I2

 ec

fc

+

 vp

vp

 ,
where I2 is the 2× 2 identity matrix.

We want to find an explicit relation between ec, fc, and s. First, we invert the equation above to

obtain the unknowns ec and fc: ec

fc

 =

 −I2 I2

0 −I2

π1 −
 −I2 I2

0 −I2

 vp

vp

 =

 −I2 I2

0 −I2

π1 +
 0

vp

 . (F4)

We next replace π1 from our main equation to obtain

 ec

fc

 =

 −I2 I2

0 −I2



I + βFw −βFw

βFw I − βFw

 oo

s

+ b1 (p)

+

 0

vp

 ,
or  ec

fc

 =

 s− oo

−βFwoo− (I − βFw)s

+

 bl (p)− bu (p)

−bl (p) + vp

 , (F5)

where the vectors bu (p) and bl (p) constitute the upper and lower parts of b1 (p), that is b1 (p) =

[b′u (p) , b
′
l (p)]

′.

In particular, if oo = 0 the above becomes,

ec = s+ bl(p)− bu(p),

fc =− (I − βFw) s− bl(p) + vp.

Clearly, given any one of the three parameters ec, fc, s, the remaining two are uniquely determined.

These equations have an interesting interpretation. In the case of logit shocks, the first equation above
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becomes:

s− ec = ln
p1 (0)

p0 (0)
− ln

p1 (1)

p0 (1)
.

The difference between the scrap values and the entry cost is identified; the difference is given by the

contrast between the odds of the probability of entry (p1 (0) /p0 (0)) and the odds of the probability of

staying in the market (p1 (1) /p0 (1)). Intuitively, in the data, the larger the probability of entry relative to

the probability of staying, the smaller the entry cost relative to the scrap value. A similar interpretation

relating scrap values and fixed costs holds for the second equation above: in particular, we can identify

the sum of the scrap values and the present value of fixed costs, since we get:

s+ (I − βFw)−1 fc = (I − βFw)−1 (−bl(p) + vp
)

and the right-hand-side is known.

Model Restrictions. We now turn to the model restrictions – presented again here for convinience.

1. oo = 0, fc ≥ 0, ec ≥ 0, and vp is known.

2. vp− fc ≤ ec ≤ E[vp−fc]
1−β , and π1(1, w

h) ≥ π1(1, w
l).

3. s does not depend on w.

Restriction 1. Under equation (F5), ec ≥ 0 and fc ≥ 0 translate respectively to:

s ≥ bu (p)− bl (p) , (F6)

(I − βFw) s ≤ vp− bl (p) . (F7)

Visualizing the set of inequalities (F6) is clear: the positive orthant is shifted to the point bu (p)− bl (p).

The hyperplanes under (F7) intersect at a unique point because (I − βFw) is invertible. Suppose

W = 2, then equation (F7) is written as the following two equations:

(1− βf1) s1 − β (1− f1) s2 ≤ vp1 − bl1 (p)

−β (1− f2) s1 + (1− βf2) s2 ≤ vp2 − bl2 (p)

where

Fw =

 f1 1− f1

1− f2 f2

 ,

6



s = [s1, s2]
′, and similarly for the vectors vp and bl(p). Both lines in the inequalities above have positive

slope and are thus increasing.

Figure F1 presents the set of values that s can take for the parameter configuration used in the

numerical example presented in Section 5 of the main paper. In the left panel, we present the set implied

by ec ≥ 0; on the right panel, the set implied by fc ≥ 0. In both panels, the horizontal axis represents

scrap values when the shock is low, wl, and the vertical axis, scrap values when the shock is high, wh.

(For ease of exposition, we limit the values in the figures to be between -100 and 100.) The true s is

represented by the black dots. Clearly, the larger polygon presented in panel (b) of Figure 1 in the main

text combines all restrictions presented separately in Figure F1.

(a) Restriction: ec ≥ 0 (b) Restriction: fc ≥ 0

Figure F1: Payoff Identified Set ΠI : Scrap Values under Alternative Restrictions

Remark F1. In summary, given the reference action J = 0, the polytope

ΠI
J =

{
πJ ∈ RX : (Req

−JM−J +Req
J )πJ = req −Req

−Jb−J , (R
iq
−JM−J +Riq

J )πJ ≤ riq −Riq
−Jb−J

}
is given by the W−dimensional polyhedral set

{
(0, s) ∈ R2W : such that s satisfies equations (F6) and (F7)

}
.

Restriction 2. We first express the three sets of inequalities of Restriction 2 in terms of the payoffs π0

and π1. Condition vp− fc ≤ ec becomes

π1(0) ≤ 0. (F8)

Next, we focus on ec ≤ E [vp− fc] / (1− β). Let f∗w denote the stationary distribution of Fw, i.e. f∗′w F
w =

7



f∗′w . Then, the inequality becomes

ec ≤ 1

1− β
1f∗′w (vp− fc) ,

where 1 is a W × 1 vector of ones. From the definition of π1 we have that ec = π1(1) − π1(0) and

vp− fc = π1(1). Therefore, we get:

π1(1)− π1(0) ≤
1

1− β
1f∗′w π1(1)

or [
−I2, I2 −

1

1− β
1f∗′w

]
π1 ≤ 0. (F9)

Finally, monotonicity in π1(1) means

[0 0 1 -1]π1 ≤ 0. (F10)

Now we stack (F8), (F9) and (F10), so that:

Riq
−J π−J = Riq

1 π1 =


I2 0

−I2 I2 − 1
1−β1f

∗′
w

0 [1 -1]

π1 ≤ 0, (F11)

and Riq
J = Riq

0 = 0 and riq = 0. Moreover, multiplying Riq
1 , from (F11), with M1 gives,

Riq
1 M1 =


I + βFw −βFw

−
(
I2 +

β
1−β1f

∗′
w

)
I2 − 1f∗′w

β [1 -1]Fw [1 -1] (I − βFw)

 .

The scrap values are confined by the inequalities (Riq
1 M1 +Riq

0 )π0 ≤ riq −Riq
1 b1 (see Remark F1 above),

which implies

−βFws ≤ −bu(p)(
I2 − 1f∗′w

)
s ≤ bu(p)− bl(p) +

1

1− β
1f∗′w bl(p)

[1 -1] (I − βFw) s ≤ bl2(p)− bl1(p),
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or in more detail,

−βf1s1 − β (1− f1) s2 ≤ bu1(p)

−β (1− f2) s1 − βf2s2 ≤ bu2(p)(
1− f∗w1

)
(s1 − s2) ≤ bu1(p)− bl1(p) +

1

β

(
f∗w1bl1(p) +

(
1− f∗w1

)
bl2(p)

)
−f∗w1 (s1 − s2) ≤ bu2(p)− bl2(p) +

1

β

(
f∗w1bl1(p) +

(
1− f∗w1

)
bl2(p)

)
(
1− β (f1 + f2 − 1)

)
(s1 − s2) ≤ bl1(p) + bl2(p),

where f∗w = [f∗w1, (1− f∗w1)]
′.

The first two inequalities correspond to the restriction vp − fc ≤ ec. They imply lower bounds on

scrap values. Note that these first two lines have negative slope and hence are decreasing. They have

a unique intersection if detFw ̸= 0 or f2 ̸= 1 − f1.
1 The next two inequalities correspond to condition

ec ≤ E [vp− fc] / (1− β). They define a box constraining the difference s1− s2. And the monotonicity in

π1(1) assumption implies the fifth inequality above. That line has positive slope and so any point above

that line satisfies the restriction.

Like Figure F1 above, Figure F2 shows the values of s for the parameter configuration presented in

Section 5 of the main paper but under Restriction 2. Panel (a) shows the set under condition vp−fc ≤ ec

(with the two downward sloping lines); panel (b) presents the set under ec ≤ E [vp− fc] / (1− β) (with

s1 − s2 constrained in a box); and panel (c) shows the set under the monotonicity condition. Their

intersection result in the light blue polygon presented in panel (b) of Figure 1 in the main text.

Restriction 3. If s1 = s2 = s, there is a single free parameter. This clearly results in a single line,

presented in panel (d) of Figure F2. Combining Restrictions 1–3 result in the blue line inside the light

blue polyhedron in panel (b) of Figure 1.

Counterfactuals. In the firm example, we consider a counterfactual experiment that decreases entry

cost by 20%, and holds everything else the same as in the baseline. This means we take g = 0 and H

block-diagonal with diagonal blocks given by H00 = I and

H11 =

τI2 (1− τ) I2

0 I2

 .
It is clear from Proposition 2 that the identified set P̃I is two-dimensional, regardless of any model

restriction, because H11 is diagonalizable with two eigenvalues that are different from one.2

1If detFw = 0 then the two constraints collapse to the single constraint: −βf1s1 − β (1− f1) s2 ≤ min
{
bu1(p), bu2(p)

}
.

2The eigenvalues of H11 are: λ1 = λ2 = 1 and λ3 = λ4 = τ < 1.
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(a) Restriction: vp− fc ≤ ec (b) Restriction: ec ≤ E[vp−fc]
1−β

(c) Restriction: π1(1, w
h) ≥ π1(1, w

l) (d) Restriction: s does not depend on w

Figure F2: Payoff Identified Set ΠI : Scrap Values under Alternative Model Restrictions

Indeed, when we calculate C0, defined in equation (15), we obtain

C0 = H11M1 −M1H00 =

τI2 (1− τ) I2

0 I2

I2 + βFw −βFw

βFw I2 − βFw

−

I2 + βFw −βFw

βFw I2 − βFw


=

(τ − 1) I2 (1− τ) I2

0 0

 .
Clearly, rank(C0) = 2. We conclude that the restriction π0(0) = 0 does not alter the dimension of the

identified set of the counterfactual CCP, although it makes (2) – or (F5) – simpler.

Counterfactual Outcomes of Interest. In our example, we consider the long-run average impact of

the entry subsidy τ on (i) the probability of staying in the market (labelled θP ), (ii) the consumer surplus
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(θS), and (iii) the value of the firm (θV ).

Probability of Being Active. The long-run average effect on the probability of being active is given by

θP = E[p̃1 (x)]− E[p1 (x)],

where the expectations are taken with respect to the ergodic distributions of the state variables x in the

counterfactual and baseline scenarios. Specifically,

θP =
∑
x∈X̃

p̃1 (x) f̃
∗ (x)−

∑
x∈X

p1 (x) f
∗ (x) ,

where f̃∗ (x) is the ergodic distribution of the (endogenous) Markovian process

F̃ (x′|x) =
∑
a∈Ã

F̃ (x′|x, a) p̃a (x) ,

and a similar expression holds for the baseline ergodic distribution f∗(x).

When x = (k,w) ∈ K × W, and k is the lagged action, the expression for θP simplifies. First, note

that the probability of choosing action a at time period t conditioned on the exogenous states w is given

by

Pr(ait = a|wit) =
∑
k∈K

Pr(ait = a|kit = k,wit) Pr(kit = k|wit),

which implies

Pr(ait = a|wit) =
∑
k∈K

pa(k,wit) Pr(ait−1 = k|wit).

Define pa(w) ≡ Pr(ait = a|w). The steady state condition implies that the vector [p0(w), ..., pA(w)]
′

satisfies the fixed-point:3
p0 (w)

...

pA (w)

 =


p0 (0, w) · · · p0 (A,w)

...
. . .

...

pA (0, w) · · · pA (A,w)



p0 (w)

...

pA (w)

 . (F12)

Let f̃∗w and f∗w be the steady-state distributions of the exogenous variables in the counterfactual and

baseline scenarios, respectively. Then

θP = E[p̃1 (k,w)]− E[p1 (k,w)] =
∑
k,w

p̃1 (k,w) f̃
∗(k|w)f̃∗w (w)−

∑
k,w

p1 (k,w) f
∗(k|w)f∗w (w) .

3For instance, in the binary choice model, we have Pr(a = 1|w) = p1(0, w)(1 − Pr(a = 1|w)) + p1(1, w) Pr(a = 1|w),
which implies Pr(a = 1|w) = p1(0, w)/[1− p1(1, w) + p1(0, w)].
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The inner sum in the first term equals p̃1 (w) due to (F12). A similar remark holds for the inner sum

of the second term which becomes p1 (w). Thus

θP =
∑
w∈W̃

p̃1 (w) f̃
∗
w (w)−

∑
w∈W

p1 (w) f
∗
w (w) .

Consumer Surplus. The long-run average change on the consumer surplus is:

θS =
∑

a∈Ã,x∈X̃

S̃ (a, x) p̃a(x)f̃
∗ (x)−

∑
a∈A,x∈X

S (a, x) pa(x)f
∗ (x) .

In the special case in which x = (k,w), and k is the lagged action and w are exogenous shocks,

we compute the consumer surplus for each action and state, S(a, k, w), by assuming a (residual) linear

inverse demand P = w − ηQ, where P is the price and Q is the quantity demanded, and assuming a

constant marginal cost mc. These imply that S(a, k, w) = 0 when the firm is inactive (a = 0), and

S(a, k, w) = (w −mc)2/8η when it is active (a = 1). So,

θS = E[S̃(a, k, w)× 1{a = 1}]− E[S(a, k, w)× 1{a = 1}]

=
∑
w∈W̃

S (w) p̃1(w)f̃
∗
w (w)−

∑
w∈W

S(w)p1(w)f
∗
w (w) .

Note that, in our example, the consumer surplus function is the same in the baseline and counterfactual

scenarios (and so is the distribution of the exogenous states, f̃∗w = f∗w). The average S changes in the

counterfactual because the firm changes its entry behavior when it receives an entry subsidy.

Value of the Firm. The value of the firm in the baseline is given by the X × 1 vector

V = (I − βFJ)
−1 (πJ + ψJ(p)

)
,

where we take J = 0 (see footnote 10 in the main text). A similar expression holds for the counterfactual

value: Ṽ = (I − β̃F̃J)
−1(π̃J + ψ̃J(p̃)). The long-run average change in the value of the firm is given by

θV =
∑
x∈X̃

Ṽ (x) f̃∗ (x)−
∑
x∈X

V (x) f∗ (x) .

As before, let f̃∗ and f∗ denote the vector of steady-state distributions, then

θV = f̃∗′ (I − β̃F̃J)
−1(π̃J + ψ̃J(p̃))

−f∗′ (I − βFJ)
−1 (πJ + ψJ(p)

)
.

The average firm value (across states) changes in the counterfactual both because the steady state distri-
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bution changes, and because the value of the firm is affected by the subsidy in all states.

Figure F3 presents the identified set for θ based on the parameter configuration of the firm entry/exit

model in Section 5. As before, the larger set (including the dark blue area) depicts ΘI under Restriction

1, while the smaller set (in light blue) shows the identified set under Restrictions 1–2, and the blue line

shows ΘI under Restrictions 1–3. The true θ is represented by the black dot.

Figure F3: Identified Set ΘI under Restrictions 1–3

G Extension: Unknown β and G

We now extend our results to allow for unknown discount factor β and distribution G. First, we charac-

terize the identified sets for p̃ and θ. Then, we discuss practical implementation and its computational

challenges.4

Formally, we assume that β ∈ B ⊂ [0, 1), and that the distribution of the idiosyncratic shocks εit

belongs to a set of parametric distributions that are absolutely continuous with respect to the Lebesgue

measure and have full support on RA+1. We denote that distribution by G(εit;λ), where λ ∈ Λ ⊂ Rq. The

ex-ante value function, denoted here by V (x;λ), is adjusted accordingly. The next proposition follows:

Proposition 1. Assume that β ∈ B ⊂ [0, 1), where B is a compact interval, and that G(εit;λ), with

λ ∈ Λ ⊂ Rq, where Λ is compact and convex. Consider the counterfactual {Ã, X̃ , β̃, G̃, hs, h}, where β̃ and

G̃ are continuous functions of β and G, respectively, and assume that V (x;λ) is continuously differentiable

with respect to λ.5 Then, the sharp identified set for the counterfactual CCP p̃ is a connected manifold.

4Magnac and Thesmar (2002) and Abbring and Daljord (2020) discuss identification of β; Blevins (2014), Chen (2017),
and Buchholz, Shum, and Xu (2020) consider identification of G in binary choice models under different model assumptions.

5Formally, we need that, for any measurable and ∥ · ∥∞-bounded function v̄a(x) on A × X , the function V̄ (v̄(x);λ) :=∫
ε
maxa∈A{v̄a(x) + εa}dG(ε;λ) is continuously differentiable with respect to λ. See Theorem 4.1 of Rust (1988).
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Moreover, if ϕ is a continuous function of (p̃, π, β, λ), then the sharp identified set for θ is a connected

set (and it is also compact when ΠI is bounded).

Proof. To extend the argument from Proposition 1 we need to prove two results: first, that the function

φ̄(κ|β, λ) is jointly continuous on κ and (β, λ), where φ̄(κ|β, λ) corresponds to the function φ̄(κ) defined

in Proposition 1 given the parameters β and λ. Second, that the set
⋃

(β,λ)∈B×ΛK|β,λ is connected,

where K|β,λ denotes the set K in Proposition 1 given β and λ. If that is the case, then the image set of⋃
(β,λ)∈B×ΛK|β,λ × {β, λ} under the function φ̄ is a connected set.

Joint continuity of φ̄(κ|β, λ) follows because β affects the Bellman contraction mapping continuously

provided it is bounded away from 1, and because of Theorem 4.1 in Rust (1988), as V is continuously

differentiable with respect to λ and a discrete state-space implies his assumptions (A11) and (A12).6

The same conditions imply that b−J(p|β, λ) are continuous in (β, λ). Therefore, if B×Λ is connected,

then
⋃

(β,λ)∈B×ΛK|β,λ is connected as well because K|β,λ depends on b−J(p|β, λ) continuously. It fol-

lows that the set
⋃

(β,λ)∈B×ΛK|β,λ × {β, λ} is connected as the cartesian product of connected sets is

connected.

Naturally, the identified sets for p̃ and θ in Proposition 1 are wider, and the computational costs

involved are greater (as discussed below) than when β and G are known. This extension also requires

choosing the compact intervals to which β and λ belong a priori, which can be difficult in practice –

though we note that in some cases some prior information exist and can help; e.g., β might be known

to be greater than or equal to 0.9 and smaller than 1. Nonetheless these difficulties, this extension has

the benefit of preserving the smoothness (and so the computational feasibility) of our optimization while

allowing for a set of flexible distributions for εit.

Implementation. We now briefly discuss some practical issues regarding the computation of the iden-

tified sets. To find the bounds for a scalar θ in practice, we need to solve the (augmented) constrained

optimization problem:

θU ≡ max
(p̃,π,β,λ)∈P̃×R(A+1)X×B×Λ

ϕ (p̃, π, β, λ; p, F ) (G13)

subject to

M(F, β)π = b−J(p, F ;β, λ),

Req π = req, (G14)

Riq π ≤ riq,

(M̃(F, β)H)π = b̃−J (p̃, F ;β, λ)− M̃(F, β)g.

6The other assumptions in Rust’s (1988) Theorem 4.1 are already satisfied by our model or hold vacuously. See the
discussion in Rust (1988), especially page 1015, and Norets (2010) for a more general result.
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As before, the lower bound is obtained similarly, by replacing max by min. (Note that we subsumed in

the notation for M̃(F, β) and b̃−J (p̃, F ;β, λ) the fact that β̃ and G̃ are continuous functions of β and G.)

The optimization (G13)–(G14) is well-behaved and can be solved using standard software, as before.

Yet, two additional computational challenges arise, besides the fact that the search now must be performed

on a larger space. First, the discount factor β enters the constraints through the matrix M(F, β), which

stacks Ma for all a ̸= J , which in turn require calculating inverse matrices for any given β; see equation

(3). This challenge can be avoided when action J is a renewal or terminal action (or under general forms

of finite dependence), becauseMa simplifies and does not involve an inverse matrix.7 (The same argument

holds for the matrix M̃(F, β).) Second, for flexible distributions G(ε;λ) for which there is no closed-form

expression for ψa, one may need to use the linear program algorithm proposed by Chiong, Galichon, and

Shum (2016) in order to calculate ψa (and obtain the corresponding b−J and b̃−J) for each given λ.8 The

additional computational costs reflect the difficulties in calculating counterfactuals in DDC models more

generally when β and G are unknown. Norets (2011) characterizes the identified set for p̃ in dynamic

multinomial choice models when G is completely nonparametric, but the identified set is infeasible to

compute in practice. We, in contrast, maintain the parametric assumption, allowing for a set of flexible

distributions while preserving the smoothness – and the computational feasibility – of the augmented

constrained optimization.

H Gradient of ϕ involving Ergodic Distribution

In this section, we show how to calculate the gradient of the function ϕ when it involves counterfactual

average effects based on ergodic distributions of the state variables.

Omit for convenience (p, F ) from the notation, and assume the function ϕ is given by

ϕ(p̃, π) =
∑
x∈X̃

Ỹ (x;π)f̃∗(x)−
∑
x∈X

Y (x;π)f∗(x),

where Ỹ (x;π) and Y (x;π) are outcome variables of interest in the counterfactual and baseline scenarios

and that may depend on baseline payoffs π (e.g., consumer surplus, or the firm value); and f̃∗(x) and

f∗(x) are the counterfactual and baseline steady-state distributions of the state variables (which in turn

depend on state transitions and choice probabilities, as shown below). Note that all target parameters

θ presented in our firm entry/exit example (discussed in details in Appendix F) and in our Monte Carlo

study (Appendix D) are of this type; in the empirical application of Section 7 in the main text, we take

the ratio of objects of this type.

7 When action J is either a renewal or a terminal action, then for all a, j ∈ A, FaFJ = FjFJ , which implies that
Ma = I + β (FJ − Fa), for all a ∈ A. The matrix Ma is linear in β under more general forms of finite dependence.

8This clearly adds non-negligible computational costs. Not only does it require solving linear programming multiple
times to maximize/minimize θ, given that we would need to calculate ψ̃ for various p̃ in an inner loop, but it is also nontrivial
to obtain the best search directions to speed up convergence of the algorithm.
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The term f̃∗(x) is the ergodic distribution of the (endogenous) Markovian process for the state variables

F̃ (x′|x) =
∑
a∈Ã

p̃(a|x)F̃ (x′|a, x).

(A similar expression holds for f∗(x).) In matrix notation, we have

ϕ(p̃, π) = Ỹ′ f̃∗ −Y′ f∗,

where Ỹ and Y are vectors of the outcome variables in the counterfactual and baseline; and f̃∗ is the

vector of the ergodic distribution satisfying the steady-state condition

f̃∗′ = f̃∗′ F̃, (H15)

where

F̃ =
∑
a∈Ã

P̃aF̃a, (H16)

and P̃a is a diagonal matrix with p̃a in its diagonal, and F̃a is the counterfactual transition matrix con-

ditional on the choice a. (Again, a similar expression holds for f∗.) Importantly, the ergodic distribution

f̃∗ depends directly on p̃ (through equations (H15)–(H16)), and indirectly on the baseline payoff π, since

p̃ depends on π through equation (13) presented in the main text.

We want to know the derivative of ϕ with respect to π and p̃, holding all other arguments of ϕ constant

(e.g., the baseline CCP p and the state transitions F ). We focus on the derivative with respect to π;

obtaining the derivative with respect to p̃ is similar but simpler, and is therefore omitted. Clearly, we

have
∂ϕ

∂π′
=

(
f̃∗′

∂Ỹ

∂π′

)
−
(
f∗′

∂Y

∂π′

)
+

(
Ỹ′ ∂f̃

∗

∂π′

)
.

The derivatives ∂Ỹ
∂π′ and ∂Y

∂π′ depend on the specific outcome of interest. Here, we focus on the third

term of the right-hand-side, ∂f̃∗

∂π′ . By the chain rule, we have

∂f̃∗

∂π′
=
∂f̃∗

∂p̃′
∂p̃

∂π′
.

By equation (13), we know that

∂p̃

∂π′
=

(
∂b̃−J

∂p̃′

)−1

M̃H.

See Appendix B.2 for a discussion of how one can take advantage of the structure of b̃−J to reduce the

cost of inverting

(
∂b̃−J

∂p̃′

)
in practice.
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We now derive the remaining term ∂f̃∗

∂p̃′ . Let x, x′, x̃ be arbitrary states and ã ̸= J . Then (H15)

pointwise becomes

f̃∗
(
x′
)
=
∑
x

f̃∗ (x)
∑
a

p̃a (x) F̃
(
x′|x, a

)
.

Therefore,

∂f̃∗
(
x′
)

∂p̃ã (x̃)
=
∑
x

∂f̃∗ (x)

∂p̃ã (x̃)
F̃
(
x′|x

)
+ f̃∗ (x̃)

[
F̃
(
x′|x̃, ã

)
− F̃

(
x′|x̃, J

)]
.

This is written compactly in matrix as,

∂f̃∗

∂p̃′a
= −(F̃′ − I)+(F̃ ′

a − F̃ ′
J) f̃

∗, (H17)

where (F̃′ − I)+ is the pseudo-inverse of (F̃′ − I), and f̃∗ is a diagonal matrix with f̃∗ in its diagonal.

I Replication of Das, Roberts, and Tybout (2007)

We now present briefly our replication of Das, Roberts, and Tybout (2007), as well as the details of our

counterfactual exercise.

Parameter Estimates. As explained in the main text, every period t a firm i chooses whether to export

or not, ait ∈ A = {0, 1}, after observing the state variables kit (the lagged decision), et (the exchange

rate), νit (the demand/supply shocks in export markets), and the logit shocks εit. Both states kit and et

are directly observed by the econometrician, while νit can be recovered from data on export revenues, as

explained below. We take wit = (et, νit).

The payoff function is given by equation (23) in Section 5. DRT specify the (log of) variable profits

as

ln vpit = ψ0 + ψ1 zi + ψ2 et + νit,

where zi is a dummy variable indicating whether the firm is large or not (based on domestic sales in year

0). They also assume the profit shocks νit equal the sum of two independent AR(1) processes (so that

νit follows an ARMA(2,1) process). We instead assume νit is AR(1); the results are not sensitive to this

simplification.

We estimate the parameters of vp “offline.” Following DRT, we impose monopolistic competition in

export markets; it yields a simple expression for vp in terms of export revenues: vpit = η−1
i Rf

it, where

ηi > 1 is a firm-specific foreign demand elasticity, and Rf
it are export revenues.

9 This relationship is useful

9The standard markup equation implied by profit maximization under monopolistic competition is Rf
it(1 − η−1

i ) = Cf
it,

where Cf
it is the variable cost of exporting.
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because Rf
it is observed in the data while vpit is not. That implies the regression equation

lnRf
it = ln ηi + ψ0 + ψ1 zi + ψ2 et + νit, (I18)

which can be used for estimation. Although ψ2 can be estimated directly by differencing the fixed-effects

out in (I18), we still need to estimate the demand elasticities ηi to recover the state variable νit. To deal

with the incidental parameters {ηi}Ni=1, DRT assume monopolistic competition in domestic markets and

impose that the ratio of foreign demand elasticities to domestic demand elasticities is constant for all

producers and equals (1 + υ). Then, by exploiting the markup equation in both domestic and foreign

markets, they obtain

1− Cit

Rit
= η−1

i

(
1 + υ

Rd
it

Rit

)
+ ξit, (I19)

where Cit and Rit are total costs and total revenues (from both domestic and foreign markets), Rd
it are

domestic revenues, and ξit is an error term that accommodates noise in this relationship. Based on data on

costs and revenues, we estimate {ηi}Ni=1 and υ applying a Nonlinear Least Squares estimator to equation

(I19). Then, given all estimated ηi’s, we regress lnRf
it − ln ηi on zi and et to estimate ψ0, ψ1, and ψ2 in

equation (I18) using Ordinary Least Squares. The parameters of the νit process are estimated using the

Maximum Likelihood estimator applied to the residuals of that regression. Following DRT, we assume

the exchange rate et follows an AR(1) process and take the values estimated by Ocampo and Villar (1995)

based on a longer time-series, 1968–1992. After the parameters of the profit function, vp, and of the state

transitions, νit and et, are estimated we move to the estimation of the dynamic parameters (namely, s,

ec, and fc).

To estimate the dynamic parameters, we discretize the state space and estimate CCPs using frequency

estimators. Given the small sample size, we discretize the support of each exogenous state in three bins,

and ignore firms’ types (zi). Because νit is observed only when the firm is exporting, we assume that

every time a firm decides to start exporting, it draws a value from νit’s ergodic distribution (this implies

that when the firm is not exporting, the only exogenous state is et). Like DRT, we set the discount factor

to 0.9. Finally, we estimate the dynamic parameters, as well as the scale parameter σ, by searching the

values that best fit the dynamic equation (7), Mπ = σb−J (i.e, we use a Minimum Distance estimator).

Here, we impose DRT’s identification assumptions: scrap values are equal to zero, and fixed and entry

costs do not depend on states.

Table I1 presents our results, with 90% confidence intervals in parentheses. Although our point

estimates are not identical to DRT’s estimates (as expected, given the small adjustments that we made),

they all lie in the range estimated by them (see column 4 of their Table 1, on page 851).10

10DRT do not implement a two-step approach as we do here. Instead, they estimate all model parameters simultaneously
by maximizing the likelihood function using a Bayesian MCMC estimator. Another difference is that they assume normally
distributed idiosyncratic shocks εit, while we assume a logit model. To make the scale parameters comparable, we need to

18



Table I1: Model Parameter Estimates

Profit Function Parameters (1) (2) Dynamic Parameters (1)

ψ0 (intercept) -10.89 -9.03 ec (entry cost) 127.45
(-20.46, -1.30) (-19.09, 1.03) (37.88, 239.34)

ψ1 (large domestic size) 1.45 -
(0.76, 2.15) -

ψ2 (exchange rate coefficient) 3.79 3.61 fc (fixed cost) 7.08
(1.76, 5.81) (1.48, 5.76) (2.03, 10.83)

λAR (AR root) 0.797 0.823
(0.785, 0.807) (0.818, 0.834)

σAR (AR unconditional std) 1.12 1.12 σ (scale parameter) 26.28
(1.10, 1.14) (1.10, 1.15) (7.94, 48.07)

Inference on Counterfactuals. We implement our inference procedure for θ = (θR, θF , θE) in the following

way: In the first step, we estimate (i) the state transitions, (ii) the variable profits as specified by DRT

(but omitting zi), and (iii) the conditional choice probabilities – all of them as explained above. In the

second step, we estimate the identified sets for each element of θ under alternative model restrictions by

solving the optimization problems (21)–(22). To make our results comparable to DRT, we fix the scale

parameter σ at the estimated value presented in Table I1. We then calculate the corresponding confidence

intervals as explained in Section 6 of the main text and in Appendix C. We implement 1000 replications

of a standard i.i.d. subsampling, resampling 16 firms over the sample time period, so that the size of

each subsample is hN = 16 ≈ N2/3. To minimize the quadratic distances in (27) and (28), we take a

diagonal weighting matrix Ω with diagonal terms given by the square-root of the ergodic distribution of

the state variable – in this way, deviations on more visited states are considered more relevant and receive

greater weights. The grid set for the approximations in the main sample is an equally spaced grid with

K = 50 points and a range from ϵ0 = 0 to ϵmax = 0.1; for the subsamples, we have the same number of

equally-distant points but over ϵ0 = 0 to ϵmax = 1. We randomly generated a set of 25 initial values for

the optimizations as discussed in Setion C. Given that the benefit-cost ratio of the revenues subsidy θR is

known (ex ante) to be point identified, we use the plug-in estimator proposed by Kalouptsidi, Lima, and

Souza-Rodrigues (2024) to estimate it, and 1000 standard i.i.d. bootstrap replications at the firm level

to construct the confidence intervals for θR.

The exact formula for each element of θ follows. Let f̃∗ and f∗ be vectors with the ergodic distributions

of the state variables in the counterfactual and in the baseline scenarios, respectively, arranged first by

kit and then by et and νit. We abuse notation slightly and use the same f̃∗ for different counterfactuals.

multiply our estimated σ by π√
6
. This is approximately 33.7, which is close to their estimates.
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The first counterfactual is a 2% revenue subsidy; the benefit-cost ratio is given by

θR =
(f̃∗ − f∗)′Rf

0.02× f̃∗′Rf
,

where Rf is the vector of export revenues ranging over the states xit = (kit, et, νit); i.e.,

Rf =

 0

Rf

 ,
where the zero vector at the top indicates that the firm is not exporting in the steady-state, k = 0, and

Rf are the export revenues ranging over et and νit when k = 1, according to equation (I18); to simplify,

we set ηi at its estimated median.

The second counterfactual is a fixed cost subsidy of 28% (which approximately matches the 2 million

pesos that DRT consider under their full set of restrictions). The benefit-cost ratio is now

θF =
(f̃∗ − f∗)′Rf

0.28× f̃∗′

 0

fc

 ,

where, as in the revenue subsidy, the vector in the denominator has a zero at the top indicating that firms

are not exporting in the steady-state when k = 0.

Finally, the third counterfactual is an entry cost subsidy of 25%. The benefit-cost ratio here is

θE =
(f̃∗ − f∗)′Rf

0.25× f̃∗′

ec ◦ p̃1
0

 ,

where ◦ is the Hadamard (i.e., element-wise) multiplication, and p̃1 is the counterfactual entry probability

vector. Note that the multiplication ec ◦ p̃1 in the denominator reflects the fact that subsidies are paid

only when the firm enters (which happens with probability p̃1). Importantly, Condition 1, required for

our inference procedure (Theorem 1), is satisfied in this application, as discussed in Appendix A.

When solving the optimization problems (21)–(22) for each element of θ = (θR, θF , θE), we provide

the numerical algorithm the gradients of θ based on the derivations presented in Appendix H.
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