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Abstract

Discrete choice data allow researchers to recover differences in utilities, but these differences may not

suffice to identify policy-relevant counterfactuals of interest. In fact, in the case of dynamic discrete

choice models, only a narrow set of counterfactuals are point-identified. In this paper, we explore

how much one can learn about counterfactual outcomes of interest within this framework. We focus

on the partial identification of counterfactuals, while allowing for (mild) model restrictions that can

gradually shrink the identified set. We derive bounds for low-dimensional objects (such as average

welfare) as arguments of optimization programs, along with a uniformly valid inference procedure.

Furthermore, we develop new and tractable computational tools and algorithms suitable for dealing

with high-dimensional problems like this. Finally, we illustrate in Monte Carlos, as well as an empirical

exercise of firms’ export decisions, the informativeness of the identified sets, and we assess the impact

of (common) model restrictions on results.
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1 Introduction

Discrete choice models have been used to answer a wide range of counterfactual questions in various fields

of economics, including industrial organization, labor, public finance, and trade. It is well-known though

that choice data allow researchers to recover only differences in individuals’ valuations: in static models,

we can identify differences in flow utilities (McFadden, 1974; Train, 2009); in dynamic models, we can

recover differences in expected discounted streams of utilities (Rust, 1994; Magnac and Thesmar, 2002).

In the latter case, which is the main focus of this paper, a recent literature has shown that knowing these

differences in value functions does not suffice to identify many counterfactual outcomes of interest, as

these may require knowledge of utility in levels; see Aguirregabiria and Suzuki (2014), Norets and Tang

(2014), and Kalouptsidi, Scott, and Souza-Rodrigues (2021). The tension between identifying differences

in valuations from choice data and the (potential) need for utility levels for counterfactuals can pose

challenges to the credibility of structural estimation.

In this paper, we assert that partially identifying model parameters and counterfactuals is a natural

route to proceed, and we explore how much one can learn about counterfactual outcomes of interest for

a large (and empirically relevant) class of counterfactual experiments. At the same time, we allow for

the possibility of incorporating additional (mild) assumptions on the underidentified payoff function that

could gradually shrink the identified set. We also derive bounds for low-dimensional counterfactual objects,

such as average welfare, as arguments of optimization programs, and provide an asymptotically uniformly

valid inference procedure. We develop novel and tractable computational tools and algorithms capable of

handling high-dimensional problems – a prevalent issue in applied studies. Our primary motivation is to

offer a solution practitioners can use for a class of models used widely in empirical work.

To fix ideas, consider a typical example of a dynamic model encountered in applied work: a firm that

decides every period whether to enter (exit) a market subject to entry costs (scrap values), with the goal

of maximizing its lifetime payoffs consisting of variable profits minus fixed costs. Typically, researchers

assume the payoff of staying out of the market (the ‘outside option’) is zero, and also impose that scrap

values and/or fixed costs do not depend on state variables, and are equal to zero. While these assumptions

suffice to identify flow payoffs, they may be strong for some industries and difficult to verify, since cost

or scrap value data are extremely rare. Mistakenly setting the scrap value to zero, for example, lowers

the firm’s expected lifetime payoffs (since nothing is obtained each time the firm exits), which in turn

generates a (possibly severe) downward bias in the estimated entry cost to rationalize the data. Most

important, these assumptions are not always innocuous for important counterfactuals (Aguirregabiria

and Suzuki, 2014; Norets and Tang, 2014; Kalouptsidi, Scott, and Souza-Rodrigues, 2021). Consider, for

instance, a counterfactual exploring the impact of an entry cost subsidy: mistakenly setting the scrap

value to zero not just potentially leads to a quantitatively wrong prediction of the subsidy’s effect, but

even to a wrong sign (see Kalouptsidi, Scott, and Souza-Rodrigues, 2021).
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Our approach avoids such assumptions and bypasses estimating the model, focusing directly on the

identified set of counterfactual objects (e.g., the welfare impact of a counterfactual entry subsidy) under

much milder restrictions, such as positivity of the entry and fixed costs, and monotonicity of variable

profits in demand shocks. In a numerical example (and in a Monte Carlo study), we illustrate that the

identified sets are informative even under the mildest assumptions. We also explore which results survive

under alternative model restrictions and show that common assumptions, such as zero scrap values, can

be rejected.

We begin by showing that for a broad class of counterfactuals involving almost any change in the prim-

itives, the sharp identified set for the counterfactual conditional choice probabilities (CCP) is a connected

manifold with dimension that can be determined from the data, by checking the rank of a specific matrix,

known to the econometrician. Specific combinations of model restrictions and counterfactual experiments

can reduce the dimension of the identified set further, leading to point identification in some cases.

To aid practitioners, who may be interested in reducing the dimension of the identified set for both

computational and policy-relevant reasons, we explore the reducing effect of some commonly used model

restrictions. For instance, we explore parametric payoffs, counterfactuals that are “local” (i.e. that affect

only a subset of the state and action space), as well as the combination of the two. We show that in all

cases, the dimension of the identified set can be substantially reduced.

We then turn to low-dimensional outcomes of interest. We show that the sharp identified set here is also

connected and, under additional mild conditions, compact. This is convenient as in practice it is sufficient

to trace the boundary of the set. In addition, when the outcome of interest is a scalar, the identified set

becomes a compact interval, in which case it suffices to calculate the lower and upper endpoints. The

endpoints can be computed by solving well-behaved constrained minimization and maximization problems.

The optimizations can be implemented using standard software (e.g., Knitro), and remain feasible even

in high-dimensional cases involving large state spaces or a large number of model parameters.1

Our approach leads naturally to an inference procedure. We develop an asymptotically uniformly

valid inference approach based on subsampling, and construct confidence sets based on test inversion.

We also propose a novel computational algorithm for inference, which is tailored to our inherently high-

dimensional dynamic setting. Such settings often present substantial challenges for other approaches

in the partial identification literature (see, e.g., the discussion on computational challenges in Molinari,

2020). Yet, as demonstrated in the Monte Carlo study, our procedure is manageable even when the state

space is large, and yields tight confidence sets with the correct coverage probabilities.

Overall, an attractive feature of this procedure is that the researcher can flexibly choose (i) the set of

model restrictions, (ii) the counterfactual experiment, and (iii) the target outcome of interest, all without

having to derive additional analytical identification results for each possible specification.

1For cases where computing the gradient is (prohibitively) costly, we develop and propose an alternative, stochastic
search procedure that takes advantage of the structure of the problem (discussed in detail in the Appendix).
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Finally, we illustrate the policy usefulness of our approach by revisiting Das, Roberts, and Tybout

(2007), who perform a horserace between different types of export subsidies (export revenues, fixed cost,

and entry cost subsidies). Similar to our firm entry/exit example, here firms decide whether to enter

into/exit from exporting. Placing several restrictions on the model primitives (e.g., fixed costs and scrap

values are equal to zero), they find that export revenue subsidies generate the highest net returns while

entry cost subsidies result on the lowest returns. We obtain the identified sets for the net returns of the

three subsidy measures under mild restrictions. We show that, although the ranking of Das, Roberts, and

Tybout (2007) can be confirmed under weaker restrictions than originally imposed, it does hinge on the

assumption that scrap values do not vary over states. Without this assumption, entry cost subsidies can

potentially outperform the other types of subsidies.

Related Literature. A large body of work studies the identification and estimation of dynamic discrete

choice (DDC) models. Rust (1994) showed that DDC models are not identified nonparametrically, and

Magnac and Thesmar (2002) characterized the degree of underidentification. Estimation procedures were

proposed by Rust (1987) and Hotz and Miller (1993).2 We build on this literature on point-identification

and estimation, and extend them to partial identification of model parameters and, more importantly,

counterfactuals.

A small but growing literature investigates the identification of counterfactuals in DDC models; see

Aguirregabiria (2010), Aguirregabiria and Suzuki (2014), Norets and Tang (2014), Arcidiacono and Miller

(2020), and Kalouptsidi, Scott, and Souza-Rodrigues (2017, 2021).3 Kalouptsidi, Scott, and Souza-

Rodrigues (2021) (henceforth ‘KSS’) is our starting point. It provides the necessary and sufficient con-

ditions for point identification of a broad class of counterfactuals and establishes that only a narrow set

of counterfactuals is point-identified. Naturally, this result raises issues concerning the interpretation of

empirical findings and poses an important challenge for researchers. Our paper provides a solution to

this challenge, which relies on partially identifying counterfactuals under only mild assumptions. Further-

more, to the best of our knowledge, ours are the first analytical results characterizing the identified set

of counterfactual behavior.

Aside from KSS, the closest paper to ours is by Norets and Tang (2014), who partially identify the

structural parameters and the (high-dimensional) counterfactual CCPs in binary choice models with an

unknown distribution of the idiosyncratic shocks. They focus on relaxing the distribution of the error term,

2These procedures were further analyzed by Hotz, Miller, Sanders, and Smith (1994); Aguirregabiria and Mira (2002,
2007); Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry (2007); and Pesendorfer and Schmidt-Dengler (2008).
Important early contributions include Miller (1984), Wolpin (1984), and Pakes (1986). More recent related contributions by
Dickstein and Morales (2018), Morales, Sheu, and Zahler (2019), and Berry and Compiani (2020) study partial identifiaction
of model parameters in dynamic settings.

3Aguirregabiria and Suzuki (2014), Norets and Tang (2014), and Arcidiacono and Miller (2020) have established the
identification of two important categories of counterfactuals in different classes of DDC models: counterfactual behavior
is identified when flow payoffs change additively by pre-specified amounts; counterfactual behavior is generally not iden-
tified when the state transition process changes. Kalouptsidi, Scott, and Souza-Rodrigues (2017) discuss identification of
counterfactual best-reply functions and equilibria in dynamic games.
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while our focus is on the recovery of the counterfactual set of low-dimensional objects of interest, involving

nonlinear functions of model parameters and counterfactual choice probabilities. Although nontrivial, our

approach is computationally tractable, accommodating multinomial rather than just binary choice models.

In terms of inference, Norets and Tang (2014) proposes a pointwise valid Bayesian approach, whereas our

method relies on subsampling and is asymptotically uniformly valid. As such, our respective contributions

are non-nested and complementary.4

Our inference approach builds on the formulation developed in Kitamura and Stoye (2018), where

the implications of economic models are expressed in terms of the minimum value of a quadratic form.

We consider a test statistic based on the minimum distance of the quadratic form to a kinked (i.e.,

non-regular), random (estimated), and possibly nonconvex set. We avoid standard convexity conditions

on such objects because they are typically incompatible with our model restrictions.5 We establish

that an appropriate application of subsampling to the quadratic-form-based distance measure yields an

asymptotically valid algorithm for inference.6

The inference procedure that we develop naturally relates to the work of Kaido, Molinari, and Stoye

(2019) and Bugni, Canay, and Shi (2017), who provide general frameworks for uniformly valid inference

procedures for low dimensional objects (e.g., a subvector or other functions of the model parameters)

within moment inequality models. As such, they can be successfully applied to a wide range of empirically

relevant problems. The nature of our proposal differs in that we tailor it to address challenges inherent

to empirical studies utilizing dynamic discrete choice models. In particular, the main challenge here,

which our approach is designed to overcome, is the high dimensionality of this setup – a prevalent issue

in empirical applications. We elaborate further on this and explain the differences of these approaches in

Section 6.

Taken together, we provide the first positive results on set-identification and computationally tractable

valid inference procedures for counterfactual outcomes in structural dynamic multinomial choice models.

These are the core contributions of our paper.

Finally, a recent and increasingly influential line of research emphasizes that (partial) identification of

potential effects of policy interventions does not necessarily require identification of all the model param-

eters.7 This line of research, including ours, is consistent with Marschak’s (1953) prominent advocacy of

4Norets (2011) extends Norets and Tang (2014) to multinomial choice models, but the corresponding identified sets
are infeasible to compute in practice. Our (set of) parametric distributions, in contrast, preserve the smoothness – and
feasibility – of our constrained optimizations. Recently, and independently, Christensen and Connault (2021) proposed a
clever way to perform sensitivity analysis of counterfactuals in structural models allowing for the distribution of unobservables
to (nonparametrically) span neighborhoods of the researcher’s assumed specification. When applied to DDC models, their
approach complements ours, offering a promising avenue for future research.

5Note that Kitamura and Stoye (2018) deal with the case where a random vector is projected on a non-smooth but fixed
object with some desirable geometric features. They then show that a bootstrap procedure combined with what they call
the tightening technique leads to a computationally efficient algorithm with asymptotic uniform validity.

6Asymptotic validity of subsampling in nonregular models with more conventional settings, such as standard moment
inequality models, have been shown in the literature: see Romano and Shaikh (2008) and Romano and Shaikh (2012).

7Contributions outside the class of structural dynamic models include Ichimura and Taber (2000, 2002) and Mogstad,
Santos, and Torgovitsky (2018) for selection models; Manski (2007) for static choice models under counterfactual choice sets;
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solving well-posed economic problems with minimal assumptions.

The rest of the paper is organized as follows: Section 2 sets out the framework; Section 3 contains

our main results regarding the set-identification of counterfactual behavior, while Section 4 focuses on

low-dimensional counterfactual outcomes of interest. Section 5 illustrates our results in the context of

a firm entry/exit problem. Section 6 discusses estimation and inference, including a description of our

computational algorithm. Section 7 presents the empirical application involving exporting subsidies; and

Section 8 concludes.8

2 Framework

In this section we provide a brief description of the basic dynamic model and its identification, as well as

define counterfactuals.

We assume time is discrete and the horizon is infinite. Every period t, agent i observes the state

variables xit and εit, and chooses an action a ∈ A = {0, ..., A}, A <∞, to solve

V (xit, εit) = max
a∈A

{
πa (xit) + εait + β E

[
V (xit+1, εit+1) |a, xit, εit

]}
,

where V (.) is the value function; xit ∈ X = {1, ..., X}, X < ∞, is observed by the econometrician and

follows a controlled Markov process, F (xit+1|xit, a); εit = (ε0it, ..., εAit) is not observed by the econometri-

cian, is i.i.d. across agents and time, is independent of xit, and has joint distribution G that is absolutely

continuous with respect to the Lebesgue measure and has full support on RA+1; the per period utility

from action a is additively separable in the bounded payoff function πa (x) and the unobservable εait; and

β ∈ [0, 1) is the discount factor.

Following the literature, we define the ex ante value function, V (xit) ≡
∫
V (xit, εit) dG (εit), i.e.

the expectation of V (xit, εit) over εit, as well as the conditional value function, va (xit) ≡ πa (xit) +

β E
[
V (xit+1) |a, xit

]
. The conditional choice probability (CCP) function is given by:

pa (xit) =

∫
1
{
va (xit) + εait ≥ vj (xit) + εjit, for all j ∈ A

}
dG (εit) ,

Blundell, Browning, and Crawford (2008), Blundell, Kristensen, and Matzkin (2014), Kitamura and Stoye (2019), and Adams
(2020) for bounds on counterfactual demand distributions and welfare analysis; Adao, Costinot, and Donaldson (2017) for
international trade models; and Bejara (2020) for macroeconomic models.

8The Online Appendix and the Supplemental Material complement the main paper. The Online Appendix contains
(a) all proofs of the propositions and theorems presented in the main text; (b) our proposed stochastic search approach to
calculate the lower and upper bounds of the identified set of relevant outcomes, without analytic gradients; (c) the details
of the computational algorithm for inference based on subsampling; and (d) our Monte Carlo study. The Supplemental
Material presents (e) several useful examples of commonly employed restrictions in applied work (using our notation); (f)
detailed information about our running example (the firm entry/exit problem); (g) the extension of our results to the case
where neither the discount factor nor the distribution of the error term is known by the econometrician; (h) the analytical
gradient of the counterfactual object of interest function when it involves long-run average effects; and (i) our replication of
Das, Roberts, and Tybout (2007). The Supplemental Material is available on the authors’ webpages.
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where 1 {·} is the indicator function. We define the (A+ 1)×1 vector of CCPs p (x) = (p0 (x) , ..., pA (x))′,

and the corresponding (A+ 1)X × 1 vector p = (p′ (1) , ..., p′ (X))′, where ′ denotes transpose.

It is useful to note that for any (a, x) there exists a real-valued function ψa (.) derived only from G

such that

V (x) = va (x) + ψa

(
p (x)

)
. (1)

Equation (1) states that the ex ante value function V equals the conditional value function of any action

a, va, plus a correction term, ψa, because choosing action a today is not necessarily optimal. When εit

follows the type I extreme value distribution, we have that ψa(p (x)) = κ− ln pa (x), where κ is the Euler

constant. Chiong, Galichon, and Shum (2016) propose a computationally tractable approach, based on

linear-programming, that can calculate ψa for any given distribution G. (See also Dearing 2019.)9

As we make extensive use of matrix notation below, we define the vectors πa, va, V, ψa ∈ RX , which

stack πa (x), va (x), V (x), and ψa(p (x)), for all x ∈ X . We often use the notation ψa(p) to emphasize the

dependence of ψa on the choice probabilities p. We also define Fa as the transition matrix with (m,n)

element equal to Pr
(
xit+1 = xn|xit = xm, a

)
. The payoff vector π ∈ R(A+1)X stacks πa for all a ∈ A, and,

similarly, F stacks (a vectorized version of) Fa for all a ∈ A. We collect all primitives of the model in the

tuple s = (A,X , β,G, F, π).

Useful Representation. Following KSS, we have that, for all a ̸= J , where J ∈ A is some (arbitrary)

reference action, πa can be represented as an affine transformation of πJ :
10

πa =Ma(F )πJ + ba (p, F ) , (2)

where

Ma(F ) = (I − βFa) (I − βFJ)
−1 , (3)

ba (p, F ) = Ma(F )ψJ (p)− ψa (p) , (4)

and I is a (comformable) identity matrix. In the logit model, ba (p, F ) = ln pa −Ma(F ) ln pJ , where ln pa

is the X × 1 vector with elements ln pa(x). To simplify notation, we omit the dependence of both matrix

Ma and vector ba on the discount factor β, as well as the dependence of ba and ψa on G. We also omit

9Equation (1) is shown in Arcidiacono and Miller (2011, Lemma 1). It makes use of the Hotz-Miller inversion (Hotz
and Miller, 1993), which, in turn, establishes that the difference of conditional value functions is a known function of the
CCPs: va (x) − vj (x) = φaj

(
p (x)

)
, where φaj (.) is again derived only from G. When εit follows the type I extreme value

distribution, φaj(p (x)) = log pa (x)− log pj (x).
10To see why, fix the vector πJ ∈ RX . Then,

πa = va − βFaV = V − ψa − βFaV = (I − βFa)V − ψa,

where for a = J , we have V = (I − βFJ)
−1 (πJ + ψJ). After substituting for V , we obtain the result. As an aside, note that

(I − βFJ) is invertible because FJ is a stochastic matrix and hence its largest eigenvalue is smaller than or equal to one.
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their dependence on the transition probabilities F when it is sufficiently clear from the context.

Example. Suppose an agent faces a binary choice a ∈ {0, 1} and that εit follows the type I extreme value

distribution. Equation (2) then becomes

π1 =M1π0 + (log p1 −M1 log p0)︸ ︷︷ ︸
=b1(p)

, (5)

where M1 = (I − βF1) (I − βF0)
−1.

It is instructive to compare this to a static model: in that case, since β = 0 (or, alternatively, F0 = F1

when choices do not affect future states), we have M1 = I and (2) becomes,

π1 = π0 + (log p1 − log p0)︸ ︷︷ ︸
=b1(p)

. (6)

In words, we obtain the well-known result that the difference of payoffs π1 − π0 equals the log odds ratio

of the choice probabilities.

The difference between the dynamic model (5) and the static model (6) is the matrix M1, which

depends on the discount factor and the state transitions. This matrix distorts both the payoff difference

and the log odds ratio of the CCPs (compared to the static version) to capture the impact of agents’

expectations about the future.

By stacking (2) for all a ̸= J and rearranging, we obtain the useful compact representation:

M(F )π = b−J(p, F ), (7)

where M(F ) = [I,−M−J(F )]; M−J(F ) stacks Ma(F ) for all a ̸= J ; the payoff vector is arranged as

π = [π′−J , π
′
J ]

′, where π−J stacks πa for all a ̸= J ; and the vector b−J(p, F ) likewise stacks ba(p, F ) for

all a ̸= J .11 Equation (7) can be understood as an alternative representation to the Bellman equation,

relating the primitives of the model and the conditional choice probabilities directly.12

Model Restrictions. We consider two types of model restrictions, beyond the basic setup. The first

is a set of d ≤ X linearly independent equalities,

Reqπ = req, (8)

11This model imposes a scale normalization. In general, the flow utility is given by πa(xit) + σεait, where σ > 0 is a scale
parameter. This means equation (7) becomes M (π/σ) = b−J . As usual in discrete choice models, when we set σ = 1 (as we
do here), the scale of the payoff is measured relative to the standard deviation of one of the components of εit.

12To see why, note that the CCP vector p generated by the model primitives is the unique vector that satisfies (7): since
the Bellman is a contraction mapping, V is unique; and hence so are va and p.
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with Req ∈ Rd×(A+1)X , or in block-form, Req = [Req
−J , R

eq
J ], where Req

−J defines how π−J enters into

the constraints and, similarly, Req
J for πJ . This formulation is general enough to incorporate several

assumptions used in practice. Examples include exclusion restrictions (setting some elements of π equal

to each other), prespecifying some πJ (set Req
J = I, Req

−J = 0 and req accordingly), and parametric

assumptions.

The second set of restrictions are m linear inequalities:

Riqπ ≤ riq, (9)

with Riq ∈ Rm×(A+1)X , or in block-form, Riq = [Riq
−J , R

iq
J ]. The inequalities (9) can incorporate shape

restrictions, such as monotonicity, concavity, and supermodularity. In Appendix E, we explicitly lay out

how several examples used in applied work can be expressed as (8) or (9).

We assume (8) and (9) are not redundant. Therefore, equations (7), (8), and (9) summarize all the

model restrictions.

Model Identification. Typically, the researcher has access to panel data on agents’ actions and states,

{ait, xit : i = 1, ..., N ; t = 1, ..., T}. Under some standard regularity conditions, the researcher can identify

and estimate the agents’ choice probabilities p, as well as the transition function F , directly from the

data. We therefore take p and F as known for the identification arguments. We also follow the literature

and assume for now that the econometrician knows the discount factor β and the distribution of the

idiosyncratic shocks G; we relax these assumptions in Appendix G. Under these conditions, the only

remaining primitive to be identified from the data is the payoff function π.

The model is identified if there is a unique payoff that can be inferred from the observed choice

probabilities and state transitions. From (7), it is clear that the basic dynamic setup alone would suffice

to identify π were the matrix M invertible. However, identification fails because M is rank-deficient: M is

an AX × (A+1)X matrix, and so rank(M) = AX < (A+ 1)X. Intuitively, π has (A+1)X parameters,

and there are only AX observed CCPs; thus there are X free payoff parameters and X restrictions will

need to be imposed to point-identify π (Rust, 1994; Magnac and Thesmar, 2002).

The sharp identified set for the payoff function is therefore the convex polyhedron characterized by

all payoffs satisfying all model restrictions. Specifically, for (p, F ) ∈ P × F, where P is the simplex of

conditional choice probabilities and F is the set of controlled Markovian transitions, the identified set for

π is given by

ΠI(p, F ) =
{
π ∈ R(A+1)X : M(F )π = b−J(p, F ), R

eqπ = req, Riqπ ≤ riq
}
. (10)

This set has dimension X − d, where 0 ≤ d ≤ X; point-identification is obtained when d = X model
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restrictions are imposed.13

Counterfactuals. Next, we turn to counterfactuals. A counterfactual is defined by a transformation of

the primitives. Formally, the counterfactual structure s̃ = (Ã, X̃ , β̃, G̃, F̃ , π̃) is obtained by applying the

transformation h = (hA, hX , hβ, hG, hF , hπ) to the primitives s = (A,X , β,G, F, π); i.e., s̃ = h(s), where

h(.) is determined by the econometrician. The sets Ã = hA(A) = {0, ..., Ã} and X̃ = hX (X ) = {1, ..., X̃}

denote the new set of actions and states, respectively. The new discount factor is β̃ = hβ(β), the new

distribution of the idiosyncratic shocks is G̃ = hG(G), and the new transition probability is F̃ = hF (F ).

Finally, the function hπ : R(A+1)X → R(Ã+1)X̃ transforms the payoff function π into the counterfactual

payoff π̃. Here, we restrict transformations on payoffs to affine changes

π̃ = Hπ + g, (11)

where the matrix H and the vector g are specified by the econometrician. I.e., the payoff π̃a(x) at an

action-state pair (a, x) is obtained as the sum of a scalar ga(x) and a linear combination of all baseline

payoffs.14 The new set of model primitives s̃ leads to a new lifetime utility, denoted by Ṽ , and a new

optimal behavior, denoted by p̃. In practice, most applied papers consider counterfactuals that affect one

primitive; see KSS for several examples of empirical work implementing such counterfactuals.

3 Identification of Counterfactual Behavior

We now investigate the identified set for the counterfactual CCP. To do so, we leverage the counterfactual

counterpart to (2) for any action a ∈ Ã, with a ̸= J . I.e.,

π̃a = M̃a(F̃ ) π̃J + b̃a(p̃, F̃ ), (12)

where M̃a(F̃ ) = (I− β̃F̃a) (I− β̃F̃J)
−1; b̃a(p̃, F̃ ) = M̃a(F̃ ) ψ̃J (p̃)− ψ̃a (p̃); the functions ψ̃J and ψ̃a depend

on the new distribution G̃ (which is omitted in our notation); and, without loss of generality, the reference

action J belongs to both A and Ã. As before, we omit the dependence of both M̃a and b̃a on the discount

factor β̃ to simplify notation.

By stacking equation (12) for all actions in Ã, rearranging it as we did previously for the baseline

13In the presence of unobserved heterogeneity, equations (7)–(9) hold for each unobserved type. This implies that, after
type-specific choice probabilities and transition functions of finitely many unobserved types are identified (e.g., following the
strategies proposed by Kasahara and Shimotsu (2009) or Hu and Shum (2012)), identified sets given by ΠI hold, and can be
calculated, for each type.

14Extensions to nonlinear transformations of π are straightforward but not pursued here because they are not common in
the empirical literature.
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case, and utilizing the fact that π̃ = Hπ+g and F̃ = hF (F ), we obtain our main counterfactual equation:

(M̃(F )H)π = b̃−J(p̃, F )− M̃(F )g, (13)

where M̃(F ) = M̃(hF (F )) = [I,−M̃−J(hF (F ))]; M̃−J(hF (F )) stacks M̃a(hF (F )) for all a ̸= J ; and

b̃−J(p̃, F ) = b̃−J(p̃, hF (F )), where the vector b̃−J(p, hF (F )) likewise stacks b̃a(p, hF (F )) for all a ̸= J .

Similar to (7), equation (13) is useful because it characterizes counterfactual behavior, relating (the

unique) p̃ and model parameters directly, with no continuation values involved. Importantly, b̃−J is a

continuously differentiable function of p̃ (holding F fixed) with an everywhere invertible Jacobian (see

Lemma 1 in KSS).

Let P̃ be the conditional probability simplex in (Ã+1)X̃. Our first proposition follows (all proofs are

in the Appendix).

Proposition 1. The sharp identified set for the counterfactual CCP p̃ is

P̃I(p, F ) =



p̃ ∈ P̃ : ∃π ∈ R(A+1)X such that

M(F )π = b−J(p, F ),

Reqπ = req, Riqπ ≤ riq,

(M̃(F )H)π = b̃−J (p̃, F )− M̃(F )g


, (14)

for (p, F ) ∈ P × F. The set P̃I(p, F ) is a smooth connected manifold with boundary, and dimension in

the interior given by the rank of the matrix CJQJ , where

CJ =
[
I,−M̃−J(F )

]
︸ ︷︷ ︸

=M̃(F )

H

 M−J(F )

I

 , (15)

and QJ is a known matrix (defined in the proof; see equation (A4) in the Appendix) that depends on

the model restrictions and on the transition probabilities F . Furthermore, rank(CJQJ) ≤ X − d. In

the absence of equality restrictions (8), the dimension of P̃I is given by rank(CJ) ≤ X. The inequality

restrictions (9) do not affect the dimension of P̃I .15

In words, a vector p̃ lying in the conditional probability simplex P̃ belongs to the identified set P̃I(p, F )

if there exists a payoff π that is compatible with the data (i.e.,M(F )π = b−J(p, F )), satisfies the additional

model restrictions (i.e., Reqπ = req and Riqπ ≤ riq), and can generate p̃ in the counterfactual scenario

(i.e., (M̃(F )H)π = b̃−J (p̃, F )− M̃(F )g).

Intuitively, equation (13) implicitly defines p̃ as a continuously differentiable function of π (taking the

15Note that the indexing of the matrices CJ and QJ by J does not affect their rank. The choice of the reference action
only determines the arrangement of these matrices and is therefore arbitrary. This is an important point to keep in mind, as
it emphasizes that the model’s structure and identification are not dependent on this choice.
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other primitives as given). The sharp identified set P̃I is therefore the image of ΠI under this function.

It is clear that P̃I is empty whenever ΠI is empty (i.e., whenever the model is rejected in the data).

An implication of the connectedness of the identified set is that a non-empty P̃I is either a singleton (in

which case p̃ is point-identified) or a continuum.

Proposition 1 also determines that the dimension of the identified set is given by the rank of the

matrix CJQJ , which is always smaller than X − d, a quantity usually smaller than the dimension of P̃,

given by X̃Ã. This implies that, typically, the identified set P̃I is informative. Intuitively, the matrix

CJ , which depends on the counterfactual transformation h, governs the relationship between the X-

dimensional “free” parameters of π (e.g., the subvector πJ) and counterfactual CCPs, in the absence of

any restrictions on π. Meanwhile, QJ determines how the dimensionality of these “free” parameters can be

further reduced once shape (equality) restrictions are imposed on π. For example, when a variable affects

only transitions but not payoffs (i.e., when there are exclusion restrictions on π), we obtain dimension

reduction on P̃I .

An important special case occurs when rank(CJQJ) = 0. In this case, P̃I collapses to a singleton,

which means that all points π ∈ ΠI map onto the same counterfactual CCP – i.e., even though the

model restrictions may not suffice to point identify the model parameters π, they may suffice to identify

counterfactual behavior p̃. This extends KSS, who have previously shown that counterfactual point-

identification is achieved in the absence of additional model restrictions if and only if rank(CJ) = 0.

Given the level of generality, no further reductions in the dimension of the identified set can be inferred

without further constraining the relevant object. We study this issue in the next section.

3.1 Dimension Reduction

To aid practitioners, who may be interested in reducing the dimension of the identified set to obtain more

informative bounds (possibly desired for policymakers), as well as for computational gains, we explore some

practical alternatives. The dimension of the counterfactual identified set depends on the counterfactual

transformation, the model restrictions, and the data. Dimension reduction can therefore be obtained

either via the type of transformation h (e.g., based on a “localized counterfactual,” discussed below) or

imposing further payoff restrictions (as applied researchers rarely leave payoffs entirely unconstrained),

or via an interaction of the two. In this subsection we explore “local” counterfactuals and parametric

payoffs.

3.1.1 “Local Counterfactuals”

Applied researches often consider counterfacuals in which only parts of the payoff function are changed,

while the rest remain unaltered – we call these “local counterfactuals.” This type of counterfactual

determines the structure of the H matrix, which in turn can affect the dimension of P̃I substantially
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(see equation (15)). Applied examples of local counterfactuals include entry cost subsidies (as in our

numerical and Monte Carlo examples) and exports subsidies (as investigated in our empirical exercise),

among several others.

Example. Consider a binary choice model A = {0, 1}, and a counterfactual that only changes the payoff

of one action, say a = 1. Take the reference action to be J = 0, and arrange all vectors and matrices as

described in the previous sections. Then, we have

H =

H11 0

0 H00

 ,
where H11 ̸= I and H00 = I. Consequently, π̃1 = H11π1 ̸= π1 and π̃0 = H00π0 = π0 (assuming g = 0).

In the absence of the equality restrictions (8), the dimension of P̃I equals the rank of C0. From (15), we

obtain

C0 = H11M1 −M1 = [H11 − I]M1,

where M1 = (I − βF1) (I − βF0)
−1. Because M1 is invertible, it follows that

rank(C0) = rank(H11 − I).

This rank drops to the extent that the eigenvalues of H11 equal one. In fact, if H11 is diagonalizable,

rank(C0) = # {eigenvalues of H11 different from 1} ,

where #{} denotes the cardinality of a set. This straightforward calculation allows us to ascertain the

dimension of the identified set in practice.

Our next proposition extends the example above to a more general setting.

Proposition 2. Suppose the counterfactual transformation only changes a subset of the payoff vector π.

Index the action-state pair of π by l, and partition the set of indices into the sets L and L′. Assume

counterfactual changes occur over the set L, and payoffs stay the same over L′, i.e.,

π̃(L) =
∑
l∈L
Hl(L)π(l),

π̃(L′) = π(L′),

where π̃(L) selects all lth entries of π̃ with l ∈ L and π̃(L′) is defined similarly; Hl denotes the l
th column

of H, while Hl(L) stands for the entries of the lth column with entries located in L. Assume without loss

of generality that J is counterfactual-invariant (i.e., π̃J = πJ) so that all pairs (J, x), x ∈ X , belong to
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L′. Then, in the absence of the equality restrictions (8), the dimension of P̃I(p, F ), for (p, F ) ∈ P × F,

is given by the rank of matrix CJ , defined in (15), which satisfies

rank(CJ) ≤ #
{
eigenvalues of H(L) different from 1

}
≤ L,

where L = #{L}. The first inequality becomes an equality when H(L) is diagonalizable.

Local counterfactuals can reduce the dimension of the identified set P̃I from X to L or less, in the

absence of any model restriction (8) and regardless of the observed data (p, F ). If L is small, a considerable

reduction occurs. Furthermore, because H is determined by the econometrician, it is not difficult to find

the appropriate eigenvalues and, therefore, find a sharp upper bound on the dimension of P̃I in practice.

3.1.2 Parametric Payoffs

The vast majority of empirical applications rely on parametric payoffs. Here, we consider how parame-

terization can potentially shrink the counterfactual identified set. We assume a flexible payoff parameter-

ization of the form

πa = zaγ + δa, (16)

for all a ∈ A, where the vector of parameters γ has length ηγ , the matrix za has size X × ηγ , and the

vector δa has length X. Clearly, we are interested in the case where ηγ ≤ X. Note that the specification

(16) satisfies the linear restriction (8), as shown in Appendix E.

Proposition 3. Assume the parametric payoff (16), with ηγ ≤ X. Then, for any given counterfactual

transformation h, the dimension of P̃I(p, F ), for (p, F ) ∈ P × F, is given by rank(CJQJ) ≤ ηγ, where

QJ = zJ .

Intuitively, parametric restrictions reduce the number of “free parameters” in π, which leads to dimen-

sion reduction in the counterfactual identified set P̃I . This dimension reduction can be significant if the

number of parameters is small. Furthermore, even when the number of parameters is not too small, it is

still possible to obtain substantial dimension reduction depending on the interaction of the counterfactual

transformation and the parametric assumption. That is the case when we combine a local counterfactual

with the parametric restriction, as our next result shows.

Proposition 4. Assume the parametric payoff (16), with ηγ ≤ X, and consider a local counterfactual.

Specifically, define the set of indices L ⊆ {1, 2, ..., ηγ}, with cardinality L = #{L}, and let γ(L) denote

the subvector of γ consisting of the entries with indices in L. Let L′ be the set of remaining indices, and

define γ(L′) accordingly. The counterfactual transformation only changes γ(L) and takes the following
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form:

γ̃(L) = D γ(L) + g(L),

γ̃(L′) = γ(L′), (17)

where D is an L× L matrix, g(L) is an L vector, and both D and g(L) are pre-specified by the econome-

trician. Then, the dimension of P̃I(p, F ), for (p, F ) ∈ P× F, is given by

rank(MZ(L) (D − I)) ≤ # {eigenvalues of D different from 1} ≤ L ≤ ηγ ,

where Z(L) = [z−J(L)′, zJ(L)′]′, and z−J(L) stacks za(L) for all a ̸= J , and za(L) is the X×L matrix that

selects all lth entries of za with l ∈ L. The first inequality becomes an equality when D is diagonalizable.

The upper bound on the dimension of the identified set presented in Proposition 4 is smaller than

the upper bound in Proposition 3, implying that the combination of a parametric assumption with a

localized counterfactual can lead to substantial dimension reduction. Concretely, when the number of

modified parameters L is small, the dimension of P̃I is significantly reduced. (For instance, when only

one parameter is changed, L = 1 and P̃I is one-dimensional.) Furthermore, as before, checking the

dimension of the identified set in practice remains straightforward – a matter of counting the number of

eigenvalues of D that are different from one.

4 Identification of Counterfactual Outcomes of Interest

As the state space X can be large in practice (making both p̃ and Ṽ high-dimensional vectors), researchers

are often interested in low-dimensional objects such as the average effects of policy interventions. Thus,

in this section, our focus shifts towards characterizing, and computing, the identified set of these specific

objects. Denote the low-dimensional counterfactual outcome of interest by θ ∈ Θ ⊂ Rn, where Θ is a

compact set (the parameter space for θ), and n is much smaller than the size of the state space X (i.e.,

n≪ X). We assume that

θ = θ(p̃, s̃; p, s) = θ(p(h(s)), h(s); p(s), s). (18)

I.e., θ depends on the counterfactual CCP, p̃, and the counterfactual structure, s̃, as well as on the baseline

CCP, p, and the primitives, s. The second equality in (18) explicitly notes that θ depends ultimately on

the baseline primitives s and the counterfactual transformation h, and it reveals the channels through

which these factors can directly or indirectly affect the outcome of interest.

In our upcoming analysis, it will prove useful to supress some of the primitives in our notation, such

as A and β in s, but retain p̃ and p, even though they are themselves functions of s, and rewrite (18) as
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follows:

θ = ϕ(p̃, p, F, π). (19)

So, the counterfactual transformation h and all primitives other than F and π remain implicit and in the

backgound.

Example. Projections of Counterfactual CCP: Suppose the outcome of interest consists of counterfactual

choice probabilities associated with a subset of actions Ã∗ ⊆ Ã and states X̃ ∗ ⊆ X̃ . In this case, an element

of θ is given by θ(a∗, x∗) = p̃a∗(x
∗), for a∗ ∈ Ã∗, x∗ ∈ X̃ ∗.

Example. Average Treatment Effects: Take an outcome variable of interest that depends on actions and

states, Ya (x, ε) (e.g., consumer surplus, or a firm’s entry probability), with a corresponding counterfactual

given by Ỹa (x, ε). (Here, we omit the dependence of Y on all the primitives, s, to simplify notation.)

The average treatment effect of the policy intervention on Y is then θ = E[Ỹa (x, ε)]− E[Ya (x, ε)], where

E[Ỹa (x, ε)] integrates over the distribution of actions and states in the counterfactual scenario, while

E[Ya (x, ε)] integrates over the factual distribution. One may consider the long-run distribution, or may

condition on an initial state and estimate short-run effects.

Our next proposition follows.

Proposition 5. The sharp identified set for θ is

ΘI(p, F ) =



θ ∈ Θ : ∃ (p̃, π) ∈ P× R(A+1)X such that

θ = ϕ (p̃, p, F, π) , M(F )π = b−J(p, F ),

Reqπ = req, Riqπ ≤ riq,

(M̃(F )H)π = b̃−J (p̃, F )− M̃(F )g


, (20)

for (p, F ) ∈ P× F. When ϕ is a continuous function of (p̃, π), ΘI(p, F ) is a connected set. In addition,

when ΠI(p, F ) is bounded, ΘI(p, F ) is compact. Finally, if θ is a scalar, then ΘI(p, F ) is an interval.

Proposition 5 states that a vector θ belongs to ΘI if and only if there exists a payoff π that is

compatible with the data (i.e., M(F )π = b−J(p, F )), satisfies the model restrictions (i.e., Reqπ = req and

Riqπ ≤ riq), can generate p̃ in the counterfactual scenario (i.e., (M̃(F )H)π = b̃−J (p̃, F )− M̃(F )g), and

the corresponding pair (p̃, π) can generate θ (i.e., θ = ϕ (p̃, p, F, π)).

When ϕ is continuous, ΘI is connected because it is the image set of a (composite) continuous function

defined on the convex polyhedron ΠI . If the model restrictions make ΠI bounded, ΘI becomes a compact

and connected set, which is convenient as it suffices to trace the boundary of ΘI to characterize this set

in practice. In addition, when θ is a scalar, ΘI reduces to a compact interval, which is even simpler to

characterize: in that case we just need to compute the lower and upper endpoints of the interval ΘI .
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The upper endpoint of this interval can be calculated by solving the following constrained maximization

problem:

θU ≡ max
(p̃,π)∈P̃×R(A+1)X

ϕ (p̃, p, F, π) (21)

subject to

M(F )π = b−J(p, F ),

Req π = req, (22)

Riq π ≤ riq,

(M̃(F )H)π = b̃−J (p̃, F )− M̃(F )g.

The lower bound of the identified set θL is defined similarly (but replacing max by min).16

Computation of ΘI . The problem (21)–(22) is a nonlinear maximization problem with linear con-

straints on π and smooth nonlinear constraints on p̃, taking the data (p, F ) as given. When ϕ is differ-

entiable, the optimization is well-behaved and can be solved using standard software (e.g., Knitro), even

when the state space is large.

In our experience, standard algorithms are highly efficient in solving (21)–(22) in empirically-relevant

high-dimensional problems when the researcher provides the gradient of ϕ (see our Monte Carlo simu-

lations in Appendix D). In some cases, however, the gradient of ϕ may be nontrivial to compute; for

instance, this is the case when the target parameter θ involves average effects based on both factual and

counterfactual ergodic distributions of the states. For such cases, we show in Appendix H how to calculate

the gradient of ϕ analytically to help the numerical search.

In other cases, numerical gradients are costly to evaluate, and then standard solvers can be slow to

converge. We thus develop a new a stochastic algorithm that exploits the structure of the problem (21)–

(22) and combines the strengths of alternative stochastic search procedures. We discuss and describe our

proposed algorithm in Appendix B.17

16In Appendix G, we provide a discussion on how to extend (21)–(22) to incorporate an unknown discount factor β and
distribution G, as well as the associated practical challenges with such an extension.

17Intuitively, one can search for θU by finding admissible values and updated directions for π, which is not computationally
difficult as it only depends on linear constraints. But finding the corresponding p̃ by solving the nonlinear equation (13)
repeatedly (and calculating the gradient of ϕ numerically) can be demanding. Alternatively, searching stochastically over

p̃ and then finding a compatible π satisfying linear constraints is simpler. However, P̃I may be a “thin” set in P̃ with an
unknown shape (since its dimension can be much smaller than the dimension of the simplex; see Proposition 1 and the
results in Section 3.1). Consequently, it is difficult to find points within that set randomly, and it is easy for perturbation
methods to “exit” the set, increasing the cost of finding the maximum θ. We therefore develop a new algorithm in which
we move in the “p̃-world” (to avoid solving (13) repeatedly), but we keep a close eye on the “π-world” (to keep track of the
model restrictions and search in relevant directions). Searching in relevant directions without solving (13) and computing
the numerical gradient of ϕ in every step improves substantially how fast θ moves on each iteration to the maximum. See
Appendix B for details.
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5 Example: Firm Entry/Exit Model

To fix ideas, we illustrate the identified sets in the context of a simple firm entry/exit problem. Suppose

firm i faces the choice set A = {out, in} = {0, 1}. Decompose the state space into xit = (kit, wit), where

kit ∈ K = {0, 1} is the lagged decision ait−1, and wit ∈ W = {1, ...,W} is an exogenous profit shifter (e.g.

market size). Assume for convenience that wit can take two values, low and high: W = {wl, wh}, with

wl < wh. The size of the state space is therefore X = KW = 4, where K = #{K} and W = #{W}.

Transition probabilities are decomposed as F (kit+1, wit+1|kit, wit, a) = F (kit+1|kit, a)F (wit+1|wit).

Let πa(k) denote the W × 1 payoff vector the firm obtains when it chooses action a given k and w, so

that πa = [π′a (0) , π
′
a (1)]

′. We impose the following structure on π:

π0 =

 oo

s

 , π1 =
 vp− fc− ec

vp− fc

 . (23)

The payoff the firm obtains when it was out of the market in the previous period and stays out in the

current period is the vector π0 (0) = oo (the value of the outside option); and the payoff when the firm

was active and decides to exit is given by the vector of scrap values, π0 (1) = s. Note that both the

outside option and the scrap values can vary with the exogenous state w. The vectors vp, fc, and ec are

the variable profits, the fixed costs, and the entry costs, respectively (all of which can vary with w as

well). The vector π1 (0) = vp− fc− ec measures the profits the firm gets when it enters the market, and

π1 (1) = vp− fc are the profits when it stays.

In this example, both π0 and π1 are 4 × 1 vectors (and so π has 2X = 8 elements). To point-

identify π we need X = 4 restrictions. Typically, researchers identify an entry model by setting oo = 0

(for 2 restrictions); and further setting either s = 0 or assuming vp − fc is known (e.g., by assuming

variable profits vp can be recovered “offline,” using price and quantity data, and setting fc = 0). When

oo = s = 0, then π0 = 0, and point identification of π follows directly from (2); it is essentially a restriction

on a reference action. When instead π0 (0) = oo = 0 and vp − fc is known, we identify the remaining

elements of π by combining (2) and (8).

Assuming the outside option equals the scrap value or the fixed costs (and all are equal to zero) may

be difficult to justify in practice, as cost or scrap value data are extremely rare (Kalouptsidi, 2014). When

the researcher is not willing to impose such restrictions, π is not point-identified. Yet, the payoff function

can be set-identified under weaker conditions. Consider, for instance, the following set of assumptions:

1. oo = 0, fc ≥ 0, ec ≥ 0, and vp is known.

2. π1(1, w
h) ≥ π1(1, wl), and vp− fc ≤ ec ≤ E[vp−fc]

1−β , where the expectation is taken over the ergodic

distribution of the state variables.

3. s does not depend on w.
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Restriction 1 assumes that the outside option is zero (as usual); fixed costs and entry costs are both

positive; and variable profits are known (estimated “offline”). This set of restrictions imposes d =W = 2

equality and m = 4 inequality constraints. From (10), it is clear that the identified set ΠI is a two-

dimensional set (X − d = 2) in the eight-dimensional space.

Restriction 2 imposes m = 5 inequality constraints: profits are increasing in w when the firm is in

the market (a monotonicity assumption); entry costs are greater than variable profits minus fixed costs

(implying that entry is always costly in the first period of entry); and ec is smaller than the expected

present value of future profits when the firm stays forever in the market (meaning that, on average, it

eventually pays off to enter).

Restriction 3 assumes an exclusion restriction: scrap values are state-invariant. This corresponds to

d = W − 1 = 1 equality restriction. Note that, by combining Restrictions 1 and 3, we obtain d = 3

linear equalities, which makes the identified set ΠI one dimensional. In Appendix F, we provide explicit

characterizations for this example.

Figure 1 presents the identified set for payoffs, ΠI , for a particular parameter configuration.18 The

larger polyhedron corresponds to ΠI under Restriction 1. The identified set is informative despite the

fact that the assumptions imposed are not overly restrictive. For a brief intuition of how the linear

(in)equalities interact to produce Figure 1, consider the set corresponding to scrap values (panel (b)). In

this model, equation (7) alone implies that the difference between scrap values and entry costs is point-

identified (see Appendix F). As a consequence, the inequality ec ≥ 0 implies a lower bound on scrap

values (for each state w), shifting the origin. Similarly, equation (7) implies that the sum of scrap values

and the present value of fixed costs is point-identified. The inequality fc ≥ 0 entails an upper bound on

scrap values, eliminating from the identified set all values for s above the intersecting lines shown in the

figure. The increasing lines reflect the fact that equation (7) relates s and the present value of fc, so that

fc ≥ 0 leads to restrictions on scrap values across states.

Restrictions 1 and 2 together lead to substantial identifying power: ΠI now corresponds to the light

blue polyhedron, which is substantially smaller. Assuming that entry is costly in the first period of entry,

vp− fc ≤ ec, is the main restriction responsible for the reduction in the identified set. This assumption

results in another lower bound on s (see panel (b)), but differently from ec ≥ 0, it involves restrictions

on fc and so imposes restrictions on s across states; the other assumptions in Restriction 2 are not as

informative in this example; see Appendix F. Interestingly, the payoff function with scrap values that

are equal to zero does not belong to ΠI under these two sets of restrictions. As mentioned previously,

setting scrap values to zero is a common way to point-identify π, but, given that s = 0 is at odds with

18We assume scrap values, entry and fixed costs do not depend on w and take the following values: s = 4.5, ec = 5, and
fc = 0.5. We also impose vp(wl) = 2 and vp(wh) = 4, so that π0 = (0, 0, 4.5, 4.5)′ and π1 = (−3.5,−1.5, 1.5, 3.5)′. The
discount factor is β = 0.9, the transition process for w is Pr(wt+1 = wl|wt = wl) = Pr(wt+1 = wh|wt = wh) = 0.75, and
the idiosyncratic shocks εit follow a type 1 extreme value distribution (the scale parameter is set at σ = 1). Under these

assumptions, E[vp−fc]
1−β

= 25.
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(a) Payoff when Stay Out, π0(0) (b) Payoff when Exit, π0(1)

(c) Payoff when Enter, π1(0) (d) Payoff when Stay In, π1(1)

Figure 1: Firm Entry/Exit Model: Payoff Identified Set ΠI under Restrictions 1, 2, and 3. The larger polyhedron
(including the dark blue areas) correspond to ΠI under Restriction 1. The light blue areas correspond to ΠI under
Restrictions 1 and 2. The identified set ΠI under Restrictions 1–3 is represented by the blue lines within the light
blue polyhedron. The true π is represented by the black dots.

Restrictions 1 and 2, such assumption would be rejected by the data.

Finally, Restriction 3 (exclusion restriction on scrap values) also has substantial identifying power as

it reduces the dimension of the identified set to one. In the figures, the identified set under Restrictions

1–3 is represented by the blue lines within the light blue polyhedron.

Counterfactuals. The counterfactual experiment we consider is a subsidy that decreases entry costs

by 20% – a “local counterfactual.” Formally, π̃ = Hπ + g, with g = 0, and H block-diagonal with the

diagonal blocks H00 and H11 given by

H00 = I, and H11 =

τI (1− τ)I

0 I

 ,
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where τ = 0.8. This implies

π̃0 = H00π0 = π0, and π̃1 = H11π1 =

 vp− fc− τ × ec

vp− fc

 .
It is clear from the outset that the identified set P̃I is two-dimensional, given that H11 is diagonalizable

with two eigenvalues that are different from one (see Proposition 2).

Figure 2 presents the results. First, note that the baseline and counterfactual CCPs, p and p̃, are

represented by the black empty circle and the black full dot, respectively. In the baseline scenario, there is

a higher probability of entering (and staying) in the high state than in the low state because higher values

of w lead to greater profits and because w follows a persistent Markov process. In the counterfactual, the

subsidy increases the probability of entry compared to the baseline in both low and high states w (as it

should). Moreover, the subsidy decreases the probability of staying in the market, as it becomes cheaper

to re-enter in the future.

We now characterize the identified set P̃I under Restrictions 1–3. Similar to our representation of ΠI

in Figure 1, the larger sets (including the dark blue areas) correspond to P̃I under Restriction 1. The

identified set is highly informative: it is a two-dimensional set in a four-dimensional space, as noted earlier,

excluding most points in P̃ from being possible counterfactual CCPs. Yet, because the baseline CCP p

is at the boundary of P̃I , one cannot rule out the possibility that the entry subsidy has no impact on

the firm’s behavior. Adding Restriction 2 reduces the size of P̃I substantially (corresponding to the light

blue areas in the figure). This is a direct consequence of the smaller set ΠI after imposing Restrictions

1 and 2 (see Figure 1). The baseline CCP does not belong to P̃I once we add Restriction 2; in fact, the

location of p and P̃I allows us to conclude that the probability of entry increases in the counterfactual

and that the probability of staying decreases. In other words, the sign of the treatment effect is identified.

The exclusion restriction on scrap values (Restriction 3) has substantial identification power, making P̃I

one-dimensional (because ΠI becomes one-dimensional as well) – see the blue lines in the figure. Note

that all identified sets are connected, as expected (Proposition 1), but not necessarily convex.

We now turn to some low-dimensional outcomes θ, in particular, the long-run average impact of the

entry subsidy on (i) the probability of staying in the market (labelled θP ), (ii) consumer surplus (θS),

and (iii) the value of the firm (θV ). Table 1 presents the identified sets for each of these outcomes under

Restrictions 1–3.19

Perhaps surprisingly, the entry subsidy decreases the long-run average probability of the firm staying

in the market, by approximately 6.4 percentage points. That is because, while the subsidy induces more

19Assuming a (residual) linear inverse demand Pit = wit − ηQit, where Pit is the price and Qit is the quantity demanded,
and assuming a constant marginal costmc, the variable profit is given by vp = (wit−mc)2/4η. The consumer surplus is S = 0
when the firm is inactive (a = 0), and S = (wit −mc)2/8η when it is active (a = 1). The value of the firm in the baseline
is given by the vector V = (I − βFJ)

−1 (πJ + ψJ(p)
)
, where we take J = 0 (see footnote 10), and a similar expression holds

for the counterfactual value: Ṽ = (I − β̃F̃J)
−1(π̃J + ψ̃J(p̃)). See Appendix F for explicit formulas for θ = (θP , θS , θV ).
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(a) Probability of Entry, p̃1(0, w) (b) Probability of Stay, p̃1(1, w)

(c) Zoom: Probability of Entry, p̃1(0, w) (d) Zoom: Probability of Stay, p̃1(1, w)

Figure 2: Identified Set for Counterfactual CCPs, P̃I , under Restrictions 1, 2, and 3. The larger sets (including

the dark blue areas) correspond to P̃I under Restriction 1. The light blue areas correspond to P̃I under Restrictions

1 and 2. The identified set P̃I under Restrictions 1–3 is represented by the blue lines within the light blue areas.
The baseline and counterfactual CCPs, p and p̃, are represented by the black empty circle and the black full dot,
respectively. The bottom panels present the “zoomed-in” versions of the top panels.

entry, it also induces more exit. In the current case, increasing both firm’s entry and exit rates results

in less time spent in the market in the long run. This in turn reduces the long-run average consumer

surplus, and raises the average long-run value of the firm.

As expected, the identified sets are all compact intervals (Proposition 5), and they all contain the true

θ. Under Restriction 1, the upper bound of the identified set for θP is zero, leading to the conclusion that

the long-run average probability of being active does not increase in the counterfactual. The lower bound

implies that the probability of staying active can be reduced by at most 12 percentage points. Similarly,

the researcher can conclude that the long-run average consumer surplus does not go up (and decreases by

at most $0.17), while the long-run average value of the firm does not go down (and increases at most by

$1.8) in response to the subsidy. These are informative identified sets despite the fact that Restriction 1
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Table 1: Sharp Identified Sets for the Long-run Impact of the Entry Subsidy on Outcomes of Interest, ΘI

Outcome of Interest Target parameter Sharp Identified Sets

True Restriction 1 Restrictions 1–2 Restrictions 1–3

Change in Prob. of Being Active -0.0638 [-0.1235, 0.0000] [-0.1235, -0.0341] [-0.1235, -0.0421]

True Restriction 1 Restrictions 1–2 Restrictions 1–3

Change in Consumer Surplus -0.0875 [-0.1735, 0.0000] [-0.1735, -0.0474] [-0.1735, -0.0573]

True Restriction 1 Restrictions 1–2 Restrictions 1–3

Change in the Value of the Firm 0.9513 [0.0000, 1.8229] [0.4489, 1.8229] [0.6388, 1.8229]

Notes: This table shows the true parameter, as well as the sharp identified sets for the long-run average effect of the 20% entry subsidy
on three outcomes of interest in the firm entry/exit problem: the probability of staying active, the consumer surplus, and the value of
the firm. The averages are taken with respect to the state variables, using the steady-state distribution. See Appendix F for details.

is mild.

Adding Restriction 2 makes all identified sets more informative. The upper bound on θP is now

lower, implying that the average probability of being active is now reduced by a number between 3.4 and

12 percentage points, which clearly identifies the sign of the impact. The endpoints of the intervals for

θS and θV change similarly. Adding Restriction 3 does not narrow the intervals much further, despite

the fact that this restriction has substantial identifying power related to the model parameters π and

counterfactual behavior p̃. That is because, while Restriction 3 reduces the dimension of ΠI and P̃I , it

does not affect substantially the extreme points of these sets that in turn generate the endpoints of ΘI .

In Appendix F, we present the three-dimensional identified set ΘI .

In Appendix D, we present results from a Monte Carlo study based on this example of firm entry and

exit. Our findings there are analogous: the sets are informative even under the mildest restrictions and

always contain the true parameter values. Moreover, calculating the bounds for θ is computationally fast,

even in cases where the state space is large.

6 Estimation and Inference

We now present the inference procedure for the main outcomes of interest θ. In particular, we want to

construct confidence sets (CS’s) for the true value of θ (rather than for the identified setΘI). Our approach

is similar in spirit to the Hotz and Miller (1993) two-step estimator: we estimate choice probabilities p

and transitions of state variables F in the first step, and then we perform inference on θ in the second

step.

We assume the econometrician has access to a panel data on agents’ actions and states: {ait, xit :

i = 1, ..., N ; t = 1, ..., T}. We consider asymptotics for the large N and fixed T case, as is typical in
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microeconometric applications, and assume i.i.d. sampling in the cross-section dimension.20 Given that

actions and states are finite, we consider frequency estimators for both p and F . Specifically, for all a ∈ A,

and all x, x′ ∈ X ,

p̂aN (x) =

∑
it 1 {xit = x, ait = a}∑

it 1 {xit = x}
, (24)

F̂aN (x′, x) =

∑
it 1
{
xit+1 = x′, xit = x, ait = a

}∑
it 1 {xit = x, ait = a}

, (25)

and the vectors of sample frequencies are denoted by p̂N and F̂N .21 We collect the terms p̂N and F̂N into

the L–vector p̂N = [p̂1N , ..., p̂LN ]′. Similarly, we collect p and F into p = [p1, ..., pL]
′ := E[e], where e is a

vector of observed indicators. Recall that each matrix Ma, a ∈ A, is a function of F , which is a subvector

of p, therefore we defineMa(p), a ∈ A, as the value ofMa evaluated at p and also define M(p) accordingly.

We use the same notation for b−J(p), as well as for M̃(p), b̃−J(p̃, p), and ϕ(p̃, π; p) when appropriate.

We construct a confidence set by inverting a test. To test the null H0 : θ = θ0 against the alternative

H1 : θ ̸= θ0, we reformulate the problem in the following way. For a fixed value θ = θ0, we take the

following equality constraints on π:

Reqπ = req, (M̃(p)H)π = b̃−J (p̃, p)− M̃(p)g, and θ0 = ϕ(p̃, π; p), for some p̃,

and collect them into

R(θ0, π, p̃; p) = 0.

This leads to the criterion function

J(θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R(θ0,π,p̃; p)=0

[b−J(p)−M(p)π]′Ω [b−J(p)−M(p)π], (26)

where Ω is a (user-chosen) positive definite weighting matrix. If θ0 belongs to ΘI then all restrictions are

satisfied and J(θ0) = 0, otherwise J(θ0) > 0. The identified set ΘI can therefore be represented as the

set of θ′s in Θ such that J(θ) = 0. This implies that the null H0 : θ = θ0 is equivalent to H ′
0 : J(θ0) = 0.

Reformulating the problem in this way has benefits that we discuss shortly.

The test statistic is based on the empirical counterpart of J(θ0), which is given by

ĴN (θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R(θ0,π,p̃; p̂N )=0

[b−J(p̂N )− M̂Nπ]
′ Ω̂N [b−J(p̂N )− M̂Nπ], (27)

20If the data is ergodic and an appropriate mixing condition is satisfied then our procedure remains valid when T → ∞
and N is fixed.

21In certain cases some elements of the transition matrix F are degenerate when the corresponding states are known
to evolve deterministically; see equation (F1) in the Online Appendix. We do not estimate these elements, and thus the
expressions in (25) are applied only to the rest of the elements of F that need to be estimated.
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where M̂N = M(p̂N ), and Ω̂N is a consistent estimator for Ω. For the rest of the paper we consider a

general specification of Ω so that it can be a (known) continuous function of p. Denoting the function by

Ω(·), we let Ω̂N = Ω(p̂N ) in (27).

The rejection region of the test with significance level α is NĴN (θ0) > ĉ1−α(θ0), where ĉ1−α(θ0) is

a data-dependent critical value. While a naive bootstrap for ĴN (θ0) fails to deliver critical values that

are asymptotically uniformly valid (see, e.g. Kitamura and Stoye, 2018), subsampling works under weak

conditions, as we shall show shortly. Let hN be the subsample size, with hN → ∞ as N → ∞ and

hN/N → 0. A subsample version of ĴN (θ0) is

Ĵ∗
hN

(θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R
(
θ0,π,p̃; p̂∗hN

)
=0

[̂b∗−J − M̂∗
hN
π]′Ω̂∗

hN
[̂b∗−J − M̂∗

hN
π], (28)

where p̂∗hN
is a subsample estimator of p, M̂∗

hN
= M(p̂∗hN

), Ω̂∗
hN

= Ω(p̂∗hN
) and

b̂∗−J = b−J(p̂
∗
hN

)− b−J(p̂N ) + b̂−J(p̂N ), (29)

with b̂−J(p̂N ) being the value of M̂Nπ solving the minimization problem (27). Note that with this

definition of b̂∗−J we implement subsampling with centering.22

The testing procedure is simple: We use the empirical distribution of hN Ĵ
∗
hN

(θ0) to obtain the critical

value ĉ1−α(θ0). When the value of the test statistic is smaller than the critical value, NĴN (θ0) ≤ ĉ1−α(θ0),

we do not reject the null H ′
0 : J(θ0) = 0, otherwise we reject it. The 1 − α confidence set will be the

collection of θ0’s for which the tests do not reject the null; in Subsection 6.1 below, we discuss the practical

implementation.

The next theorem follows:

Theorem 1. Under Condition 1 presented in Appendix A,

lim inf
N→∞

inf
(p,θ)∈P

Pr{NĴN (θ) ≤ ĉ1−α(θ)} = 1− α,

where ĉ1−α(θ) is the 1−α quantile of hN Ĵ
∗
hN

(θ), with 0 ≤ α ≤ 1
2 , and, for some positive constants c1 and

c2,

P :=


(p, θ) : pℓ ∈ (0, 1), E

[∣∣∣∣ eℓ√
pℓ(1−pℓ)

∣∣∣∣2+c1
]
< c2, 1 ≤ ℓ ≤ L, θ ∈ Θ,

∃(p̃, π) ∈ P̃× R(A+1)X such that M(p)π = b−J(p),

Riqπ ≤ riq, R(θ, π, p̃; p) = 0, det(Ω(p)) ≥ c1


.

The asymptotically uniformly valid 1− α confidence set for θ is CS = {θ ∈ Θ : NĴN (θ) ≤ ĉ1−α(θ)}.
22The uncentered version takes b̂∗−J = b−J(p̂

∗
hN

), and it is asymptotically valid as well. However, in our numerical
experience, it has worse finite sample behavior than the centered version.

25



The set P imposes regularity conditions on the data generating process for every counterfactual value

of interest θ ∈ Θ.23 Our test statistic (27) is the squared minimum distance between the random vector

b−J(p̂N ) and a random manifold. It is therefore crucial to take sampling uncertainty in both objects

into account. Importantly, the manifold does not have to be convex. We avoid such standard convexity

conditions as they are typically incompatible with our model restrictions, in particular the general equality

restrictions R(θ0, π, p̃; p) = 0. Theorem 1 establishes the asymptotic validity of our procedure, addressing

these issues.24

Remark 1. We note that potentially there exist many possible choices for the criterion function J(·) and

thus its sample counterpart ĴN (·). The form of J(·) in the paper is motivated by our method of inference,

which is based on a Chernoff-type test, with its critical values obtained by (recentered) subsampling.

The Chernoff test is one of the most studied procedures involving non-regularity (see, for example, Geyer

(1994), Shapiro (1985) and Chernoff (1954), just to name a few), and our proof strategy relies on existing

results in the area. Of course it is by all means possible that one may be able to establish asymptotic

uniform validity in other formulations, and that is an important topic of future investigation. We also

note that our formulation accommodates efficient computational approaches as outlined in Section 6.1.

We demonstrate, through Monte Carlo (Appendix D) and an empirical application (Section 7), that our

algorithms are highly effective in problems of realistic and relevant scales.

Remark 2. A comment on some approaches that are alternative to ours as outlined above is in order.

One such an alternative would start with treating our problem as a system of equalities, with constraints

on the parameter space. Note that in population we have two (vector) equalities (7) and (13) indexed by

parameters (p̃, π), satisfying the restrictions (8) and (9). Our parameter of interest is the counterfactual

θ = ϕ(p̃, π; p), that is, a low-dimensional function of the parameter (p̃, π). This feature makes recent

procedures developed by Kaido, Molinari, and Stoye (2019) and Bugni, Canay, and Shi (2017) potentially

useful tools for the problem treated in our paper. Both Kaido, Molinari, and Stoye (2019) and Bugni,

Canay, and Shi (2017) propose highly versatile procedures that guarantee asymptotic uniform validity in

a very general class of models. The nature of our proposal is somewhat different, in that we tailor it to

address challenges inherent to empirical applications utilizing dynamic discrete choice models. The main

hurdle, which can be potentially serious, in application of methods by Kaido, Molinari, and Stoye (2019)

and Bugni, Canay, and Shi (2017) is computational. For example, take the classic model by Rust (1987)

where we have a binary choice model, so A + 1 = Ã + 1 = 2, with the dimension of the state space X

(and X̃) being 90. The dimension of (p̃, π) is then ÃX̃ + (A + 1)X = 270. In fact, this is smaller than

23The first restriction in the definition of P is a standard condition imposed to guarantee the Lindeberg condition. The
second, the third, and the fourth collect the model restrictions (the equalities in the fourth restriction include the constraints
that arise as we fix the value of the counterfactual θ). The final restriction guarantees that the minimizations (27) and (28)
are asymptotically well-behaved.

24Formally, the test statistic projects b−J(p̂N ) on the manifold S(p̂N , θ0), where S(p, θ) := {M(p)π, π ∈ R(A+1)X :

R(θ, π, p̃; p) = 0, and Riqπ ≤ riq hold for some p̃ ∈ P̃}. Condition 1 does not require that S(p̂N , θ0) be convex; it requires
instead that the tangent cone of S(p̂N , θ0) be convex (see Appendix A for details).
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in typical empirical work; for instance, in a recent paper by Blundell, Gowrisankaran, and Langer (2020)

the authors use X̃ = X = 240, making the relevant dimension 720. We conclude that in these empirical

applications, the dimension of the original parameter space (before projection) tends to be prohibitively

high for the practical application of this approach.

Alternatively, we can fix p̃, but not π, and rewrite the system into a moment inequality form by elimi-

nating π (i.e. solving for other variables). As noted in Kitamura and Stoye (2018), this amounts to trans-

forming, in the language of discrete geometry, a V-representation of a polytope to an H-representation,

and it is generally known to be expensive to compute, and impractical even for a moderately sized system.

Finally, one may try to eliminate both π and p̃ from the system to get some form of moment inequalities;

but this is even harder to implement, especially because of the nonlinear constraints that involve p̃, and

so it is not a practically feasible option either.

Remark 3. Obviously our procedure requires an appropriate choice of subsample size hN . Fortunately,

some practical guidelines have been proposed and used in the literature of set-identified models: see

Bugni (2016) and Ciliberto and Tamer (2009). We adopt their recommendations in carrying out our

subsamping procedure. Notably, Bugni (2016) provides theoretical rationale for the rate hN ≍ N2/3 and

the efficacy of the choice hN = N2/3 has been confirmed in Bugni, Canay, and Shi (2017) through Monte

Carlo simulations. In our set of Monte Carlo experiments, we have set hN = N2/3 and observed that

it works well in our context. This, indeed, stands as our principal recommendation for practitioners.

Alternatively, Ciliberto and Tamer (2009) propose a different option: hN = N/4. Although this option

violates Condition 1(ii) (specifically, hN/N → 0), our simulation results confirm the practical suitability of

this alternative in our setting as well, thus presenting a robust alternative or offering a valuable robustness

check. The use of regularization through tuning parameters to overcome issues associated with nonregular

features of statistical problems, such as the κ parameter in Andrews and Soares (2010), is standard, and

it is always a good practice to verify robustness by trying different values of the tuning parameter.

6.1 Computational Algorithm for Inference

We now present our computational algorithm for our inference procedure, starting with a discussion on

how we accurately approximate ĴN (θ) and ĉ1−α(θ). The algorithm’s details are provided in Appendix C

for reference.25

Computing ĴN (θ0) and ĉ1−α(θ0). To simplify, we focus on the scalar case, θ ∈ R. We first note that

it may be difficult to solve the minimization problem (26) in the main sample and in all subsamples,

25Note that our algorithm is designed to address practical implementation challenges, which is distinct from the statistical
process itself. Therefore, the approximation errors do not influence the outcomes in Theorem 1. In our Monte Carlo study,
presented in Appendix D, we observe minimal approximation errors in the confidence sets, even when dealing with large state
spaces. These results are reassuring; obtaining a formal asymptotic validity result that incorporates these approximation
errors is an important question for future research.
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especially when ϕ(p̃, π; p) is a complicated function, involving, e.g., the ergodic distribution of the state

variables, as in our applied examples. That is because finding particular values for counterfactual CCP p̃

and baseline flow payoff π that generate the exact (fixed) value θ0 can be computationally burdensome.

In fact, solving (26) just once is already extremely costly.

Our algorithm is designed to overcome this challenge, while simultaneously effectively handling high-

dimensional problems. To do so, we take advantage of the relationship between the optimization problems

(21)–(22) and (26). Specifically, and abstracting from sampling issues, consider the relaxed version of

(21)–(22):

θL(ϵ) ≡ min
(p̃,π)∈P̃×R(A+1)X

ϕ (p̃, π; p) ; θU (ϵ) ≡ max
(p̃,π)∈P̃×R(A+1)X

ϕ (p̃, π; p) (30)

subject to

∥∥M(p)π − b−J(p)
∥∥
Ω
≤ ϵ,

Req π = req, (31)

Riq π ≤ riq,

(M̃(p)H)π = b̃−J (p̃, p)− M̃(p) g,

where ∥.∥Ω is the matrix norm defined as ∥x∥Ω = x′Ωx for x ∈ RAX , and ϵ ≥ 0.

The difference between the original problem (21)–(22) and its relaxed version (30)–(31) is the in-

equality constraint
∥∥M(p)π − b−J(p)

∥∥
Ω
≤ ϵ. When ϵ = 0, the problems coincide, and for any ϵ ≥ 0

it is evident that θL(ϵ) ≤ θL(0) ≡ θL ≤ θU ≡ θU (0) ≤ θU (ϵ). This implies that the identified set

[θL, θU ] ≡ [θL(0), θU (0)] is contained in the interval [θL(ϵ), θU (ϵ)] when ϵ > 0.

Importantly, J(θ0) = 0 for all points θ0 in the identified set [θL, θU ], and J(θ0) ≤ ϵ for all points θ0

in the wider interval [θL(ϵ), θU (ϵ)] by construction. This means that for any θ0 not in [θL, θU ] but within

[θL(ϵ), θU (ϵ)], with ϵ > 0, we have that 0 < J(θ0) ≤ ϵ. Consequently, by employing a sequence of ϵ values,

0 ≡ ϵ0 < ϵ1 < ... < ϵk < ... < ϵK ≡ ϵmax, for some finite K, and solving the corresponding relaxed

problem (30)–(31) for each ϵk, we obtain an increasing sequence of intervals:

[θL(0), θU (0)] ⊆ ... ⊆ [θL(ϵk), θ
U (ϵk)] ⊆ ... ⊆ [θL(ϵK), θU (ϵK)].

Simultaneously, we obtain a sequence of J values such that: (a) J(θ0) = 0 if θ0 ∈ [θL(0), θU (0)], and (b)

ϵk−1 < J(θ0) ≤ ϵk if θ0 /∈ [θL(ϵk−1), θ
U (ϵk−1)] and θ0 ∈ [θL(ϵk), θ

U (ϵk)], for k = 1, ...,K. This enables us

to obtain accurate approximations for J(θ0) for any given θ0 by using a fine grid of ϵ values and without

having to solve the practically difficult problem (26) directly. Obtaining such approximations in the main

sample and all subsamples is computationally cheaper than solving (26) repeatedly because (30)–(31) is

a smooth well-behaved problem. In addition, because the relaxed problems based on ϵk and ϵk+1 are very
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similar, the solution to the problem with ϵk provides an excellent initial value for the problem with ϵk+1,

which helps reduce computational costs substantially.

In practice, we employ two step-functions, denoted as J −(θ) and J +(θ), to approximate J(θ) based on

the grid points and the sequence of intervals [θL(ϵk), θ
U (ϵk)]. These approximations satisfy the following

conditions: (i) J −(θ) = J(θ) = J +(θ) = ϵ0 = 0 for θ ∈ [θL, θU ], and (ii) J −(θ) ≡ ϵk−1 < J(θ) ≤

ϵk ≡ J +(θ) for θ /∈ [θL, θU ] and k = 1, ...,K. Essentially, J − approximates J from below, while J +

approximates it from above. (See Figure C1 in Appendix C for an illustration.)

For a sufficiently fine grid, both approximations yield similar values. However, in the case of a coarse

grid, to ensure conservative behavior in finite samples, we recommend approximating J in the main

sample from below. Intuitively, this (weakly) reduces the value of the test statistic used to construct the

confidence set, leading to over-coverage in finite samples, all else being constant. For the subsamples,

we approximate J from above, as it (weakly) increases the critical value ĉ1−α, which also leads to over-

coverage in finite samples. Our Monte Carlo simulations confirm these intuitive results.

Step-by-Step Algorithm. Our computational approach consists of four main steps, explained in Al-

gorithm 1 below. To facilitate exposition, we leave to Appendix C a detailed explanation of all auxiliary

functions used in the algorithm.

The first step is to solve the K + 1 relaxed problems (30)–(31) for the grid points ϵ = {ϵk}Kk=0 within

the main sample, aimed at approximating (from below) the test statistic NĴN (θ) for any given θ. I.e.,

we approximate the function ĴN (θ) in our first step. This is achieved through the use of two auxiliary

functions, employed sequentially: (i) Approximations(.), which calculates the sequence of intervals,

[θL(ϵk), θ
U (ϵk)], with the corresponding solutions for π; and then (ii) J (.), which effectively approximates

ĴN from below. Appendix C provides practical guidance on specifying the grid set ϵ – defining values

for ϵmax and K for an equally spaced grid – and on selecting a set of initial values for the optimization

problem (30)–(31) with ϵ0 = 0, referred to in line 3 of the algorithm. Of note, the randomly generated

set of initial values that we recommend satisfy the model restrictions (7)–(9) by construction.

In the second step, we repeat the same approximation in each subsample, but now with three differ-

ences. First, we incorporate re-centering, as defined in (29), because it improves the finite sample behavior

of the procedure. This is acomplished using the auxiliary function Recentering before the subsampling

starts, as shown in line 6. Second, we rescale the grid set ϵ with K equidistant points in the range from

ϵ0 = 0 to N
hN
× ϵmax. That is because failing to rescale the grid in the subsamples may lead to non-

overlapping between the values that the test statistic NĴN may take in the sample and the distribution

of the test statistic in the subsamples hN Ĵ
∗
hN

, since N ≫ hN , which would invalidate the approximation

to the critical value ĉ1−α. We therefore adjust the inputs to the Approximations function accordingly,

as presented in line 10 of the algorithm. Finally, we approximate the subsampling test statistic Ĵ∗
hN

from

above, as discussed previously.
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In the third step, we obtain the critical value ĉ1−α(θ) for any given θ from the subsampling approxi-

mations to Ĵ∗
hN

. In other words, in this step, we approximate the critical value function. Finally, in the

last step, we construct the 1−α confidence set CS = [θLci, θ
U
ci] using the approximations to both functions

ĴN (θ) and ĉ1−α(θ). At this point, it is trivial to determine the confidence set because the cost to evaluate

the functions approximating ĴN (θ) and ĉ1−α(θ) at any given θ is negligible.

Algorithm 1 Subsampling Inference

1: Inputs: ϵ, p, hN , N , α, S // hN = N2/3 recommended by Bugni (2016)

2: function Confidence Set(ϵ, p, hN , N , α, S) // Compute the 1− α confidence set for θ

3: πinit ← randomly generated set of initial values

4: (θ̂
U
(·), πU (·), θ̂

L
(·), πL(·))← Approximations(ϵ,πinit, p, 0,main sample) // Compute sequence

of intervals [θL(ϵk), θ
U (ϵk)], with corresponding π’s, in the main sample

5: Ĵ(·)← J (θ̂
U
(·), θ̂

L
(·), ϵ, below) // Approximate J from below in the main sample

6: bctr−J(·)← Recentering(θ̂
U
(·), πU (·), θ̂

L
(·), πL(·), ϵ, p) // Recentering, used in the subsamples

7: for s = 1, . . . , S do

8: p̂∗s ← subsample with replacement of size hN from p.

9: πinit
s ← randomly generated initial values

10: (θ̂
U∗
s (·), θ̂

L∗
s (·))← (θU (·), θL(·)) from Approximations

(
N
hN
ϵ,πinit

s , p̂∗s, b
ctr
−J(·), subsample

)
//

Compute sequence of intervals [θL(ϵk), θ
U (ϵk)], with corresponding π’s, in each subsample

11: Ĵ∗
s (·)← J (θ̂

U∗
s (·), θ̂

L∗
s (·), ϵ, above) // Approximate J from above in the subsamples

12: end for

13: ĉ1−α(·)← quantile
(
hN Ĵ

∗
s (·), 1− α

)
// Compute the 1− α critical value function

14: θLci ← min θ such that NĴ(θ) < ĉ1−α(θ) // Find the lower bound of the confidence set

15: θUci ← max θ such that NĴ(θ) < ĉ1−α(θ) // Find the upper bound of the confidence set

16: return [θLci, θ
U
ci]

17: end function

7 Empirical Application

In this section, we illustrate our approach in the context of a dynamic model of export behavior. To that

end, we consider the setup of Das, Roberts, and Tybout (2007), henceforth ‘DRT’, who perform a horserace

between different kinds of export subsidies. As the authors point out, industrial exporters are highly

prized in developing countries for generating gains from trade, sustaining production and employment

during domestic recessions, and facilitating the absorption of foreign technologies. As a consequence,

exporters often receive governmental support. Yet, seemingly similar subsidies may generate different

export responses in different industries and time periods, making it difficult for policy makers to know
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which type of support is optimal. To shed light on these issues, DRT develop a structural dynamic model

of firm export decisions and simulate returns of different subsidies. Here, we adopt their specification and

explore the identifying power of alternative model restrictions to assess which of their restrictions deliver

their main findings.

Data. We use DRT’s plant-level panel data from Colombian manufacturing industries and focus on the

knitting mills industry. The dataset is composed of 64 knit fabric producers observed annually between

1981–1991; the sample has 704 plant-year observations. Like DRT, we focus on firms that operated

continuously in the domestic market, given that they were responsible for most of the exports over this

period. The share of exporting firms increased from 12% in 1981 to 18% by the end of the sample period,

possibly a result of the 33% depreciation of Colombia’s real exchange rate. This industry also depicts

significant turnover: the average probability of re-entry into export markets is 61%. On average, export

revenues of exporting firms are approximately 1.4 times the domestic revenues.

Model. DRT assume that export markets are monopolistically competitive; this leads to a specification

similar to the firm entry/exit model presented in Section 5. In particular, every period t a firm i chooses

whether to export or not, ait ∈ A = {0, 1}. The state variables are (i) the lagged decision (kit = ait−1),

and (ii) exchange rates and demand/supply shocks in export markets (wit). The exogenous shocks wit

follow (discretized) independent normal-AR(1) processes. The payoff function is given by equation (23)

in Section 5. To point identify the model, DRT restrict to zero the payoffs of not exporting (i.e., both

the outside value and the scrap value are set to zero). They also impose state-invariant entry and fixed

costs, making their model overidentified. We relax these assumptions and instead explore the identifying

power of Restrictions 1, 2, and 3 presented in the entry/exit model. In principle, scrap values may differ

from zero because they may involve idleness costs (given that exiting is often temporary) or depreciation

costs. Similarly, fixed costs and entry costs may depend on the aggregate states, as they involve finding

trading partners, setting up distribution networks, maintaining labor and capital abroad, etc.26 For ease

of exposition, we leave the model details to Appendix I.

Counterfactuals and Outcomes of Interest. DRT focus on three counterfactual policies: (i) direct

subsidies to plants’ export revenues, such as a tax rebate that is proportional to foreign sales; (ii) subsidies

to the cost of entering into exporting, such as grants for information or technology acquisition for export

development; and (iii) payments designed to cover the annual fixed costs of operating in the export market.

We follow DRT and consider a 2% export revenue subsidy, a 25% entry cost subsidy, and a 28% fixed

cost subsidy.

26The payoff when not exporting (the outside option) may also be different from zero since it includes domestic profits.
However, following DRT, we do not explore this possibility given the limitations in the data.
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The main outcome of interest is a benefit–cost ratio based on the long-run average annual gain in export

revenues divided by the long-run average government subsidy expenditures. We denote the ratios for the

revenue, fixed cost, and entry cost subsidies by θR, θF , and θE , respectively, and take θ = (θR, θF , θE) –

see Appendix I for explicit formulas for θ.

Evaluating ex-ante the impact of different model restrictions on θ is not trivial. Note first that

while export revenues are observed in the data, the long-run average change in revenues depends on

firms’ decisions to export given the type of subsidy. This means that all numerators in θ depend on

the counterfactual CCPs. Next, note that all denominators in θ equal the long-run average government

expenditures, which depend on the fraction of firms exporting in the counterfactual steady-state; i.e.,

they all depend on p̃ as well. In addition, θF and θE depend on the unknown parameters, fc and ec,

respectively, since the government expenditures are direct functions of these costs. In the case of the

entry cost subsidy, a further complication is that the (subsidized) entry cost is paid only when firms

enter, implying that p̃ affects the direct payments in each state (in addition to affecting the steady-state

distribution). In short, θ depends on both p̃ and π highly nonlinearly.

In terms of identification, the benefit-cost ratio of the revenue subsidy θR is point-identified. That is

both because the averages in the numerator and denominator depend on observed revenues, and because

p̃ is identified (since it involves known changes to known quantities, i.e., the identified variable profits;

see KSS), implying that the counterfactual steady-state distribution is also point-identified. The other

two target objects, θF and θE , are partially identified both because (i) the counterfactual behavior p̃ is

not point-identified (as the entry subsidy in our example in Section 5), and (ii) the denominators in the

benefit–cost ratios depend directly on model parameters that are partially identified (i.e., on fc and ec,

respectively). In sum, both θF and θE involve ratios of set-identified objects.

Results. DRT find, under their imposed restrictions (s = 0, as well as ec, fc invariant over states), that

revenue subsidies yield the highest return, followed by the fixed cost subsidies, and then by the entry cost

subsidies; i.e. θR > θF > θE . We explore the robustness of this finding under milder restrictions.

We implement our procedure as explained in Section 6 and in Appendices C and I.27 Table 2 presents

the benefit–cost ratios under Restrictions 1–3. For each type of subsidy, we show both the estimated

identified set (in brackets) and the corresponding confidence interval (in parenthesis). The revenue subsidy

27The transition process for exchange rates is taken from a long-time series as in DRT. Given the small sample size, we
discretize the support of each exogenous state in three bins. We estimate CCPs using frequency estimators. The identified
sets are estimated by solving (21)–(22) in the sample. To compute confidence intervals, we implement 1000 replications
of a standard i.i.d. subsampling, resampling 16 firms over the sample time period, so that the size of each subsample is

hN = 16 ≈ N
2
3 . To minimize the quadratic distances in (27) and (28), we take a diagonal weighting matrix Ω with diagonal

elements given by the square-root of the ergodic distribution of the state variable – thus, deviations on more visited states
are considered more relevant and receive greater weights. Given that θR is known (ex ante) to be point identified, we use
the plug-in estimator proposed by Kalouptsidi, Lima, and Souza-Rodrigues (2024) to estimate it, and 1000 standard i.i.d.
bootstrap replications at the firm level to construct the confidence intervals for θR. To make our results comparable to DRT,
we have also estimated the model parameters under their restrictions and obtained very similar results as theirs. See details
in Appendix I.
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generates an estimated benefit–cost ratio, θR, of approximately 15 pesos of revenue per unit cost. Its

impact is statistically significant and economically large, and it is fairly consistent with the estimates in

DRT. Because θR is point identified, it does not depend on any additional model restriction (other than

the basic framework (7)).

Table 2: Export Revenue/Cost Ratio for Different Subsidies under Alternative Model Restrictions

Restriction 1 Restrictions 1–2 Restrictions 1–3

Revenue Subsidies

Estimated Identified Set 15.13 15.13 15.13
90% Confidence Interval (11.15, 18.90) (11.15, 18.90) (11.15, 18.90)

Fixed Costs Subsidies

Estimated Identified Set [8.41, 30.82] [11.10, 13.34] [11.92, 12.60]
90% Confidence Interval (7.33, 35.21) (9.60, 14.64) (9.42, 13.97)

Entry Costs Subsidies

Estimated Identified Set [4.40, 24.04] [7.85, 17.28] [8.88, 9.36]
90% Confidence Interval (3.42, 34.86) (6.98, 23.89) (7.14, 14.63)

Notes: This table shows the estimated sharp identified sets for the average gains in total export revenues divided
by the average government subsidy expenditures, both averaged over states in the long-run. The top panel shows
the gains of a 2% export revenue subsidy; the middle panel, the gains of a 28% fixed cost subsidy; and the bottom
panel, the gains of a 25% entry cost subsidy. The (nonsingleton) identified sets are in brackets. The data set is
composed of 704 plant-year observations in the Colombian knitting mills industry. The 90% confidence intervals
are in parenthesis and were calculated based on 1000 bootstrap replications for the revenue subsidies, and 1000
subsample replications for both fixed and entry costs subsidies (with subsample sizes of hN = 16). Restrictions
1, 2, and 3 are all specified in the main text (Section 5). See Online Appendix I for details.

We now discuss θF and θE , which are partially identified. Restriction 1 (i.e., fc ≥ 0 and ec ≥ 0) is not

sufficiently informative here: the fixed cost subsidies ratio, θF , is between 8 and 30, and the entry cost

subsidies ratio, θE , ranges from 4 to 24. These sets are wide because there are still many model parameter

values that can rationalize observed behavior. The identified sets overlap and we cannot conclude which

policy generates the highest return.

Adding Restriction 2 increases the identification power substantially: the ratio for the fixed cost

subsidies is now between 11 and 13. This identified set is highly informative and its upper bound is smaller

than θR, suggesting that the revenue subsidy is more potent than the fixed cost subsidy. Intuitively, under

Restriction 2, entry is profitable in the long-term, which imposes an upper limit on the values that fc

can take. This upper limit, in turn, reduces the potential impact of the fixed cost subsidies.

Hence, under Restrictions 1 and 2 we can only confirm part of DRT’s findings (that θR > θF ). In

contrast, there is substantial uncertainty regarding the benefit–cost ratio for the entry cost subsidy θE :

its identified set is between 7.8 and 17, containing both the estimated θR and the identified set of θF .

Incorporating exclusion restrictions on scrap values (Restriction 3) narrows the identified set for θE

substantially: the benefit-cost ratio now ranges from 8.9 to 9.4, which is highly informative. Hence, under
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Restrictions 1-3, we can confirm DRT’s subsidy ranking (θR > θF > θE): revenue subsidies generate

the highest export revenues per unit cost, followed by fixed cost subsidies, and then by the entry cost

subsidies. We thus conclude that, although this ranking can be obtained under milder restrictions than

those imposed by DRT, it does seem to hinge on the assumption that scrap values do not depend on state

variables. We now provide some intuition for this finding.

Why does the exclusion restriction on scrap values (Restriction 3) render entry cost subsidies less

effective? Intuitively, under Restrictions 1–2, the state variables can induce a correlation between export

revenues and scrap values. When that correlation is negative, entry subsidies would provide incentives

for low-productivity firms (i.e., those with low export revenues) to enter and exit the export markets

repeatedly, while high-productivity firms (with high export revenues) would stay longer in exporting.

This makes the entry subsidy effective in terms of the benefit-cost ratio. When we impose the exclusion

restriction on scrap values (Restriction 3), we eliminate that negative correlation and, as a result, the

low-productivity firms stay more often in the export markets. This reduces the average gain in export

revenues per peso of subsidy, pushing the upper bound on θE downwards, and making the entry subsidy

worse than both the revenues and fixed costs subsidies. A similar result holds, but is less relevant in

magnitude, for the lower bound on θE , reflecting possible positive correlations between export revenues

and scrap values.

Of note, the uniformly valid confidence intervals indicate substantial sampling uncertainty, which is

not surprising given the size of the data set.

8 Conclusion

In this paper, we explore how much one can learn about counterfactual outcomes in dynamic discrete

choice models for a large and empirically relevant class of counterfactual experiments for which the level

of flow payoffs may matter. We derive analytical properties of the identified sets under alternative model

restrictions. We also develop an asymptotically uniformly valid inference approach based on subsampling,

as well as novel and computationally tractable procedures that can handle high-dimensional problems –

a prevalent issue in applied studies. The empirical implications of our results are illustrated by revisiting

the study of Das, Roberts, and Tybout (2007) on exporting decisions and subsidies.

Our primary motivation is to offer a solution for practitioners that is applicable to a widely used

class of empirical models. We hope our results can aid practitioners in assessing which empirical findings

survive under minimal restrictions, in understanding the impact of commonly imposed restrictions on

counterfactuals, and in including confidence sets around their counterfactual outcomes.
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Online Appendix

A Proofs

A.1 Proof of Proposition 1

To simplify notation, we omit the dependencies of matrices and vectors on the observable (p, F ) ∈ P×F.

First, we show that (i) the identified set P̃I is sharp. Then, we prove that (ii) P̃I is a smooth connected

manifold with boundary, and with dimension in the interior given by rank(CJ QJ) ≤ X − d. Finally, we

show that (iii) in the absence of equality restrictions (8), the dimension of the identified set simplifies to

rank(CJ) ≤ X.

(i) The identified set P̃I defined in (14) is sharp by construction because equations (7), (8), and (9)

contain all model restrictions, and equation (13) fully characterizes p̃ as an (implicit) function of π (see

the arguments in footnotes 10 and 12 in the main text, and the characterization of P̃I below).

(ii) Here, our proof proceeds in three steps. First, we reparameterize the model. Second, we construct a

local function relating the counterfactual CCP and the (reparameterized) model parameters. Finally, we

extend the local function to a global function whose image set characterizes the counterfactual identified

set.

Reparameterization. Clearly, P̃I is empty whenever ΠI is empty, so we assume hereafter that ΠI is

non-empty. Recall that the identified set is characterized by the equations (7), (8), (9), and (13). By

combining (7) and (8), we get

(Req
−JM−J +Req

J )πJ = req −Req
−Jb−J ,

which is of the form:

QeqπJ = qeq, (A1)
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where

Qeq = Req
−JM−J +Req

J (A2)

is a d×X matrix, and qeq = req −Req
−Jb−J ∈ Rd. Equation (A1) incorporates all equality restrictions on

π, and expresses them in terms of the “free parameter” πJ ∈ RX .

We assume that rank(Qeq) = d and that the first d columns of Qeq are independent.28 We write (A1)

as

QeqπJ = [Q1 Q2]

 π1J

κ

 = Q1π
1
J +Q2κ = qeq,

where Q1 is d× d and non-singular. Then π1J = Q−1
1 qeq −Q−1

1 Q2κ. Therefore,

πJ =

 π1J

κ

 =

 −Q−1
1 Q2

I

κ+

 Q−1
1 qeq

0

 = QJκ+ rQ, (A3)

where, clearly,

QJ =

 −Q−1
1 Q2

I

 . (A4)

This gives a complete parameterization of all πJ in terms of the “free” X − d parameters in the vector κ.

Represent the elements of this set by πJ(κ). Note that in the absence of the equality restrictions (8), we

can just take πJ = κ.

Similarly, combine (7) and (9), to get

(Riq
−JM−J +Riq

J )πJ ≤ r
iq −Riq

−Jb−J ,

which is of the form:

QiqπJ ≤ qiq,

where Qiq = Riq
−JM−J +Riq

J is an m×X matrix, and qiq = riq −Riq
−Jb−J ∈ Rm. Substituting πJ in the

inequality above by πJ(κ) defined in (A3) and rearranging, we get the m inequalities defined in terms of

κ ∈ RX−d:

QiqQJκ ≤ qiq −QiqrQ. (A5)

Define the set

K =
{
κ ∈ RX−d : QiqQJκ ≤ qiq −QiqrQ

}
. (A6)

Clearly, K is a convex polyhedron. By construction, any vector π = [π′−J , π
′
J ]

′ such that π−J =

M−JπJ(κ) + b−J , with πJ(κ) defined by (A3) for some κ ∈ K satisfies (7), (8), and (9). I.e., for any

28In the more general case, the independent columns of Qeq must be permuted to the front.
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given κ ∈ K, we can find one π satisfying all model restrictions.

Local Function. Combine (7) and (13) to obtain

[I,−M̃−J ]︸ ︷︷ ︸
=M̃

H1,−J H1J

H2,−J H2J


︸ ︷︷ ︸

=H

 M−JπJ + b−J

πJ


︸ ︷︷ ︸

=π

= b̃−J (p̃)− M̃g,

or,

CJπJ +
(
H1,−J −M−JH2,−J

)
b−J = b̃−J (p̃)− g−J + M̃−JgJ , (A7)

where CJ is the ÃX̃ ×X matrix defined in equation (15).

Noting that p̃ has to satisfy X̃ restrictions as it is a collection of conditional probability vectors, let

p̃∗ denote a ÃX̃-vector of independent elements of p̃, and denote the set of independent elements by P̃∗.

Substitute (A3) into (A7), rearrange it, and define the function F : RX−d × int(P̃∗)→ RÃX̃ given by

F
(
κ, p̃∗

)
= −CJQJκ− CJrQ −

(
H1,−J −M−JH2,−J

)
b−J(p) + b̃−J

(
p̃∗
)
− g−J + M̃−JgJ ,

where int(P̃∗) is the interior of P̃∗. Clearly, the model and counterfactual restrictions impose F (κ, p̃∗) = 0,

for all κ ∈ K.

The Jacobian of F is given by ∇F =
[
∂F
∂κ ,

∂F
∂p̃∗

]
, with

∂F
∂κ

= −CJQJ ,

∂F
∂p̃∗

=
∂b̃−J

∂p̃∗
.

Because
∂b̃−J

∂p̃∗ is everywhere invertible (see KSS), the implicit function theorem applies. Specifically, for

a point (κ0, p̃∗0) ∈ RX−d × int(P̃∗) satisfying F
(
κ0, p̃∗0

)
= 0, there exist open sets U ⊆ RX−d and

W ⊆ int(P̃∗) such that κ0 ∈ U and p̃∗0 ∈ W , and there exists a continuously differentiable function

φ : U →W satisfying p̃∗0 = φ(κ0) and that

F
(
κ, φ (κ)

)
= 0,

for all κ ∈ U . Furthermore,

∂φ (κ)

∂κ
= −

[
∂F
∂p̃∗

]−1 ∂F
∂κ

=

[
∂b̃−J

∂p̃∗

]−1

CJQJ .

The rank of the matrix ∂φ(κ)
∂κ equals the rank of CJQJ because

∂b̃−J

∂p̃∗ is invertible everywhere. Let

rank(CJQJ) = k. By the Rank Theorem, the image set of φ is a differentiable k-dimensional manifold in
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int(P̃∗) (see Theorem 3.5.1 in Krantz and Parks, 2003). Clearly, by restricting κ to the convex polyhedron

K, the image set of φ becomes a k-dimensional manifold with boundary.

Extension to a Global Function. We can construct a global function φ̄ defined on the entire domain

K based on the local function φ defined above. To do so, we need to show that the constructed φ̄ is not a

set-function on K. I.e., if for any pair of points (κ0, p̃∗0) and (κ0, p̃∗1) with κ0 ∈ K and p̃∗0, p̃∗1 ∈ int(P̃∗),

if φ̄(κ0) = p̃∗0 and φ̄(κ0) = p̃∗1, then we must have p̃∗0 = p̃∗1. Suppose by contradiction that there exist

implicit functions φ0 and φ1 defined locally on the neighborhood of the points (κ0, p̃∗0) and (κ0, p̃∗1) such

that p̃∗0 = φ0
(
κ0
)
and p̃∗1 = φ1

(
κ0
)
, with p̃∗0 ̸= p̃∗1. Next, recall that for any point κ0 ∈ K, there exists

only one vector of payoffs π(κ0) = [π′−J(κ
0), π′J(κ

0)]′ satisfying all model restrictions: This vector is given

by the elements π−J(κ
0) =M−JπJ(κ

0)+b−J , and πJ(κ
0) defined by (A3). This leads to the counterfactual

payoff π̃(κ0), which is given by the affine function π̃(κ0) = Hπ(κ0) + g. Finally, the counterfactual payoff

π̃(κ0) can generate just one conditional choice probability function in the counterfactual scenario (by

the uniqueness of the solution of the Bellman equation). We therefore must have p̃∗0 = p̃∗1 (as well as

φ0 = φ1 = φ). The global function φ̄ equals the local implicit functions everywhere.29

We conclude that the identified set P̃I is the image set of the global function φ̄, defined on the domain

K. Consequently, P̃I is a manifold with boundary and with dimension in the interior given by the rank

of CJQJ . Further, P̃I is connected because φ̄ is a continuous function defined on the convex domain K.

Finally, we have rank(CJQJ) ≤ X − d because rank(CJ) ≤ min{ÃX̃,X} and rank(QJ) = X − d.

(ii) In the absence of model restrictions, we take πJ = κ, or equivalently, QJ = I and rQ = 0. Following

the same argument as in part (i), we conclude that P̃I is a connected manifold with boundary and with

dimension in the interior given by the rank of CJ .

A.2 Proof of Proposition 2

Fix (p, F ) ∈ P × F and omit it from our notation. First we show that the rows of the matrix CJ
corresponding to indices in L′ are zero and therefore do not contribute to the rank of CJ . Then we derive

the rank of CJ based on the rows corrresponding to indices in L.

We start by stacking (2) for all a ̸= J to obtain

π−J =M−JπJ + b−J , (A8)

where M−J stacks Ma for all a ̸= J . Consider the index l ∈ L′. Take the lth entry of π̃−J , denoted by

π̃−J(l). Let Ml denote the l row of M−J Then, the counterfactual version of equation (A8) for the l entry

29While different κ′s can generate the same p̃∗ (because the function φ is not one-to-one, which is at the heart of the
identification problem in dynamic discrete choice models), a single κ cannot generate more than one p̃∗.
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gives

π̃−J(l) =Mlπ̃J + bl (p̃) =MlπJ + bl (p̃) , (A9)

where bl corresponds to the lth entry of the vector b−J . Moreover, π̃−J(l) = π−J(l) because l ∈ L′, while

again from (A8),

π̃−J(l) = π−J(l) =MlπJ + bl(p). (A10)

(Here, we opted for emphasizing the dependency of bl on p explicitly.) Equating the right hand side of

(A9) and (A10) gives bl (p̃) = bl (p). Since this holds for any πJ , equation (A7) implies that all rows of

CJ located in L′ are equal to zero.

Next consider the set of indices L. The factual and counterfactual versions of (A8) restricted on L

gives

π−J(L) =M−J(L)πJ + b−J (p) (L), (A11)

π̃−J(L) =M−J(L)π̃J + b−J (p̃) (L) =M−J(L)πJ + b−J (p̃) (L), (A12)

where π−J(L), π̃−J(L), M−J(L), b−J (p) (L), and b−J (p̃) (L) select all the entries π−J(l), π̃−J(l), M−J(l),

bl(p), and bl (p̃) for l ∈ L; and the right most equality is due to the invariance of J , π̃J = πJ . The

definition of the counterfactual transformation, π̃ = Hπ, implies

π̃(L) = H(L)π(L) +H(L′)π(L′) = H(L)π(L),

where the second equality holds because, by assumption, H(L′) = 0. Next, notice that, because π̃J =

πJ , we have that π̃(L) = π̃−J(L) and π(L) = π−J(L), so that the equality above becomes π̃−J(L) =

H(L)π−J(L). We now insert πJ above using (A11) to obtain,

π̃−J(L) = H(L)M−J(L)πJ +H(L)b−J(p)(L).

Next, using (A12),

bl (p̃) (L) = (H(L)− I)M−J(L)πJ +H(L)b−J(p)(L).

Comparison to (A7) demonstrates that the nonzero rows of CJ are given by [H(L)−I]M−J(L). Therefore,

the rank of CJ satisfies

rank(CJ) ≤ #
{
eigenvalues of H(L) different from 1

}
≤ L,

because M−J(L) is full rank. The first inequality becomes an equality when H(L) is diagonalizable.
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A.3 Proof of Proposition 3

Fix (p, F ) ∈ P×F and omit it from our notation. First, note that the specification (16) can be equivalently

described by linear restrictions (8) (see Appendix E). Then, the proof follows from Proposition 1. Here

we show the connection QJ = zJ . To that end, take equation (A7) and replace πJ by its parametric

specification defined in (16), so that

CJ zJ γ + CJδJ +
(
H1,−J −M−JH2,−J

)
b−J = b̃−J (p̃)− g−J + M̃−JgJ .

Clearly, the dimension of the identified set P̃I is given by rank(CJzJ) ≤ ηγ .30

A.4 Proof of Proposition 4

Although this is a special case of Proposition 1, it is simpler to prove it directly. Fix (p, F ) ∈ P × F

and omit it from our notation. Consider our base equation (2) for both the baseline and counterfactual

scenarios, for all a ∈ A:

πa =MaπJ + ba(p) (A13)

π̃a =Maπ̃J + ba(p̃). (A14)

Subtract (A13) from (A14):

π̃a − πa =Ma(π̃J − πJ) + ba(p̃)− ba(p). (A15)

Next, use the fact that πa = zaγ + δa and π̃a = zaγ̃ + δa for all actions:

za(γ̃ − γ) =MazJ(γ̃ − γ) + ba(p̃)− ba(p).

Or

(za −MazJ)(γ̃ − γ) = ba(p̃)− ba(p). (A16)

Now, notice that γ̃(L′)− γ(L′) = 0 and that

γ̃(L)− γ(L) = (D − I) γ(L) + g(L),

where I is a conformable identity matrix. Thus, (A16) becomes

(za(L)−MazJ(L)) (D − I) γ(L) + (za(L)−MazJ(L)) g(L) = ba(p̃)− ba(p).

30Equivalently, one can reparametrize πJ in (A3) in terms of the ηγ “free parameters” γ, instead of the X − d “free
parameters” κ. The rest of the proof follows.
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By stacking over a ̸= J , we get

MZ(L) (D − I) γ(L) +MZ(L) g(L) = b−J(p̃)− b−J(p), (A17)

which corresponds to equation (A7). The result follows.

A.5 Proof of Proposition 5

Fix (p, F ) ∈ P × F and omit it from our notation. The identified set ΘI defined in (20) is sharp by

construction. Following the proof of Proposition 1, we can construct payoff vectors satisfying all model

restrictions, denoted by π(κ), and obtain the counterfactual CCP from the function p̃∗ = φ̄(κ), where φ̄

is continuously differentiable, κ ∈ K, and K is defined in (A6). We have therefore

θ = ϕ(p̃, π) = ϕ(φ̄(κ), π(κ)) = ϕ̄(κ),

When the function ϕ is continuous, so is the function ϕ̄ because φ̄(κ) and π(κ) are both continuous.

Clearly, ΘI equals the image set of the function ϕ̄ defined on the domain K. The image set is connected

because K is convex, and it becomes compact when K is compact (which happens when ΠI is bounded, see

the proof of Proposition 1). Furthermore, when θ is a scalar, the connected set ΘI becomes an interval.

A.6 Proof of Theorem 1

First we introduce conditions used in the statement of Theorem 1. Formally, the (populational) mini-

mization problem (26) projects b−J(p) on the manifold S(p, θ) under the weighted norm ∥x∥Ω = x′Ωx,

for x ∈ RAX , where

S(p, θ) := {M(p)π, π ∈ R(A+1)X : R(θ, π, p̃; p) = 0, and Riqπ ≤ riq hold for some p̃ ∈ P̃}. (A18)

The value of J(θ) is the squared length of the projection residual vector.

It is useful to impose a mild requirement on S(p, θ) in terms of its local geometric property. To this

end, we introduce the notion of tangent cone:

Definition 1. For a (possibly non-convex) set A ⊂ Rd, the tangent cone of A at x ∈ A, henceforth

denoted by TA(x), is given by

TA(x) := lim sup
τ↓0

τ−1(A⊖ x),

where ⊖ denotes the usual Minkowski difference.

See, e.g., Section 6A of Rockafellar and Wets (2009) for a discussion on the role of a tangent cone and

other related concepts.
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Condition 1. (i) For every (p, θ0) ∈ P, the tangent cone TS(p,θ0)(x) of S(p, θ0) is convex at each x ∈

RAX ∈ S(p, θ0). (ii) The tuning parameter sequence hN is chosen such that hN →∞ and hN/N → 0 as

N →∞. (iii) Both ϕ and hF are continuously differentiable functions.

Condition 1 is weak and reasonable. Condition 1(ii) is a restriction on the subsample size, our tuning

parameter. Condition 1(iii) imposes a standard smoothness restriction on counterfactuals. Condition

1(i) is also a very weak restriction, and many of existing tools for asymptotically uniform inference for

set-identified models cease to remain valid when this is violated. More importantly, it holds for many

commonly encountered applications. For example, this trivially holds for the counterfactual considered in

our Monte Carlo because θ is the long-run average probability of staying in the market and so it does not

directly depend on π. Next, consider the three counterfactual objects in the DRT empirical application

(see Appendix I). Once again, Condition 1(i) holds trivially for the first specification, θR, regarding the

benefit-cost ratio of the export revenue subsidy, for the same reason as above. With the second example

concerning a fixed cost subsidy, θF , note that the set S(p, p̃, θ) := {M(p)π, π ∈ R(A+1)X : R(θ, π, p̃; p) = 0}

in this case is a linear manifold determined by the ergodic distribution of the state variables in the

counterfactual scenario, f̃∗, which is continuous in p̃. Therefore, in this example S∗(p, θ) := ∪
p̃∈P̃S(p, p̃, θ)

satisfies Condition 1(i). As the set {M(p)π, π ∈ R(A+1)X : Riqπ ≤ riq} is a convex polytope, we see that

Condition 1(i) holds for θF . A similar argument shows that it holds for the third counterfactual concerning

an entry cost subsidy, θE , as well.

Now we prove Theorem 1. Consider a sequence {(pN , θN ) ∈ P, N ∈ N}. Recall that p and F are

determined by p. Let (pN , FN ) := (p(pN ), F (pN )). In what follows we use symbols such as SN , ŜN ,

Π̄N , (V̄N , VN , v), (W̄N ,WN , w), B, µN ,
(
η
ζ

)
and Σ (and their appropriate subsample counterparts with an

asterisk symbol * in superscript) while omitting their dependence on θN to ease the notational burden in

the proof.

Let SN := S(pN , θN ) and ŜN := S(p̂N , θN ), where S(p, θ) is defined in (A18). Then writing ∥x∥2Ω :=

x′Ωx for x ∈ RAX ,

NĴN (θN ) = min
x∈ŜN

N∥b−J(p̂N )− x∥2
Ω̂N

= min
x∈ŜN

∥
√
N [b−J(p̂N )− b−J(pN )]−

√
N [x− b−J(pN )]∥2

Ω̂N
(A19)

= min
ξ∈

√
N(ŜN⊖b−J (pN ))

∥
√
N [b−J(p̂N )− b−J(pN )]− ξ ∥2

Ω̂N
,

where ⊖ denotes the usual Minkowski difference, and for c ∈ R++ and a set A ∈ Rd, we let cA denote the

set A dilated by the factor c, that is, {cx : x ∈ A}.

To show the theorem, it suffices to consider sequences pN , N ∈ N such that

(i) infx∈bdy(SN ) ∥b−J(pN )− x∥Ω = O(1/
√
N), where bdy(SN ) is the boundary of SN , and

(ii) Each sequence {pN , N = 1, 2, ...} converges.
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Suppose pN , N ∈ N satisfies (i) and (ii). The restrictions imposed on P guarantee that along the sequence

pN it holds that
√
N [b−J(p̂N )− b−J(pN )]

d→ η,

where η is a zero mean Gaussian vector. In what follows we also use the following notation: for finite

sets V,W ⊆ Rd we let conv(V ) and cone(W ) denote the convex hull of V and the cone spanned by W ,

respectively; then the Minkowski sum conv(V ) ⊕ cone(W ) is a polyhedron. We approximate the last

term in equation (A19) following Chernoff (1954). Under Condition 1 we have:

NĴN (θN )
d
= min

ξ∈Π̄N

∥η − ξ∥2Ω + op(1), (A20)

where Π̄N = conv(V̄N ) ⊕ cone(W̄N ) is a random polyhedron, with V̄N = VN + v, VN ∈ RAX×m,

W̄N = WN + w, WN ∈ RAX×n, and v and w are RAX×m-valued and RAX×n-valued zero-mean Gaussian

random matrices, respectively, for some m,n ∈ N. Put loosely, the polyhedron Π̄N is determined through

vertices and rays, parameterized by V̄N and rays W̄N , respectively. This corresponds to the so-called

V-representation (see, for example, Theorem 1.2 in Ziegler (2012)) of the polyhedron Π̄N , which is repre-

sented as a sum of a convex hull of the AX-vectors V̄N and conical combination of the AX-vectors W̄N ,

which approximates ŜN := S(p̂N , θN ).

Note that the estimation uncertainty in ŜN makes the polyhedron Π̄N that appears in the asymptotic

approximation (A20) random. Also define a (deterministic) sequence of polyhedra ΠN = conv(VN ) ⊕

cone(WN ). By the representation theorem for polyhedra (see, for example, Theorem 1.2 in Ziegler (2012))

we can write

ΠN = {ξ : Bξ ≤ µN} for some B ∈ Rℓ×AX ,

where µN ≥ 0 for all N and µN = O(1).

Recalling that each transition matrix Fa, a ∈ A, depends on pN (as so does F ), write

det(Ma(pN )) = det
(
(1− βFa(pN ))(1− βFJ(pN ))−1

)
=

det(I − βFa(pN ))

det(I − βFJ(pN ))
.

Let {λia(pN )} and {λiJ(pN )} be the eigenvalues of Fa(pN ) and FJ(pN ), then

det(Ma(pN )) =
det(β−1I − Fa(pN ))

det(β−1I − FJ(pN ))

=

∏X
i=1(β

−1 − λia(pN ))∏X
i=1(β

−1 − λiJ(pN ))

> c, for every a ∈ A and every N ∈ N (A21)

holds for some c > 0 that does not depend on N as β is fixed in the unit interval (0, 1) and {λia(pN )} and

{λiJ(pN )} are inside the unit circle for every N .
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Note that the approximation (A20) holds for any sequence {V ′
N ,W

′
N}N∈N such that V ′

N = VN + o(1)

andW ′
N =WN +o(1), and with Condition 1 and (A21) we can choose {VN ,WN}N∈N such that the matrix

B above does not depend on N . Then we have an alternative representation for the random polyhedron

Π̄N as well: for some positive definite matrix Σ it holds that

Π̄N = {ξ : Bξ ≤ µN + ζ},

where the vector
(
η
ζ

)
∼ N(0,Σ). In sum, we have

NĴN (θN )
d
= min

ξ:Bξ≤µN+ζ
∥η − ξ∥2Ω + op(1). (A22)

Next we turn to the subsample statistic Ĵ∗
hN

(θN ). To show the uniform validity of subsampling we

can instead analyze the asymptotic behavior of the statistic ĴhN
, the Ĵ-statistic calculated from a random

sample of size hN , drawn according to pN (Romano and Shaikh, 2012). That is, we now study the

limiting behavior of the CDF GhN
(x, pN ), N = 1, 2, ..., where Gℓ(x, p) := Prp{ℓĴℓ(θN ) ≤ x} for ℓ ∈ N.

Then proceeding as before, along the sequence pN we have

hN ĴhN
(θN )

d
= min

ξ∈Π̄∗
hN ,N

∥η∗ − ξ∥2Ω + op(1), (A23)

where Π̄∗
hN ,N = conv(V̄ ∗

hN ,N ) ⊕ cone(W̄ ∗
hN ,N ), with V̄ ∗

hN ,N = V ∗
hN ,N + v∗, V ∗

hN ,N ∈ RAX×m, W̄ ∗
hN ,N =

W ∗
hN ,N +w∗, W ∗

hN ,N ∈ RAX×m, and η∗, v∗ and w∗ are zero-mean Gaussian random elements taking values

in RAX , RAX×m and RAX×n with (η∗, v∗, w∗)
d
= (η, v, w). Define Π∗

hN ,N = conv(V ∗
hN ,N ) ⊕ cone(W ∗

hN ,N )

and observe that it has a half-space based representation Π∗
hN ,N = {ξ : Bξ ≤

√
hN
N µN}. We now have

Π̄∗
N =

{
ξ : Bξ ≤

√
hN
N
µN + ζ∗

}
.

Recall that µN = O(1), and moreover, we have
(
η∗

ζ∗

)
∼ N(0,Σ). Therefore

hN ĴhN
(θN )

d→ min
ξ:Bξ≤ζ

∥η − ξ∥2Ω. (A24)

In sum, for every sequence pN , N ∈ N satisfying conditions (i) and (ii) above, by (A22) and (A24) and

noting µN ≥ 0 for every N , we have

lim sup
N→∞

sup
x
(GhN

(x, pN )−GN (x, pN )) ≤ 0.

We can now invoke Theorem 2.1 in Romano and Shaikh (2012) to conclude.
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B A Proposed Stochastic Search Algorithm for the Identified Set,

When Analytic Gradients are not Available

As explained in the main text, in our experience, standard solvers are highly efficient in solving (21)–(22)

when the researcher can provide the gradient of ϕ. However, when numerical (or analytical) gradients are

costly to evaluate in practice, standard solvers can be slow in converging to the optimum. For such cases,

we propose a stochastic algorithm that exploits the structure of the problem and combines the strengths

of alternative stochastic search procedures, as we explain below.

Our proposed algorithm builds upon a couple of observations. First, while a search over π to maximize

ϕ is feasible, it is computationally costly especially when it is expensive to calculate the gradient of ϕ

numerically. In high-dimensional problems, this may become intractable. This procedure searches over

the admissible values that π can take, and, for each candidate, finds the corresponding counterfactual

CCP by solving the nonlinear equation (13), and then it evaluates ϕ – and its (numerical) derivative, to

obtain updated directions for π – until reaching the maximum value for θ. Although finding admissible

values for π is not difficult in high-dimensional problems (as it only depends on linear constraints), and

solving the nonlinear equation (13) once is not computationally costly (as standard quasi-Newton methods

can be used to find p̃), solving (13) too many times and calculating the gradient of ϕ numerically can be

demanding. Unless the econometrician imposes a sufficient number of assumptions to make π effectively

a low dimensional vector (e.g., 3-dimensional or smaller), this method takes a long time to converge, as

it requires too many evaluations before we can increase θ substantially in the direction of its maximum.

Second, it is possible to perform a search over p̃, instead of π, to calculate θU . For any given p̃, existence

of a π satisfying linear constraints is computationally cheap (for example, existence can be easily checked

as a solution to a linear programming problem). If there is no such π satisfying all restrictions, we discard

p̃, since it does not belong to the identified set P̃I . If there exists some π satisfying the restrictions, we

keep p̃, and compute the corresponding θ. This approach may be particularly useful when ϕ is not a

direct function of π, in which case it is not necessary to find a particular π to calculate θ – existence of

some π suffices. The difficulty here is that, while an exhaustive grid search over p̃ can be used to find the

maximum θU , grid search is unfeasible for empirically-relevant high-dimensional problems. An alternative

would be to perform a stochastic search (to find good directions for p̃).31 Yet, and more importantly, the

random search must be performed on the ÃX̃–space P̃, while the identified set P̃I can be of much smaller

dimension: X−d, or smaller (depending on the rank of CJQJ ; see Proposition 1). In other words, P̃I may

be a “thin” set in P̃. The combination of a “thin” set with an unknown shape (recall that p̃ is a nonlinear

31For instance, one possibility is to perturb p̃ completely randomly (p̃+ ε) and check whether the perturbed vector lies in

the identified set P̃I (or within a tolerance level) – where checking this amounts to checking existence of π satisfying linear
restrictions, as mentioned above. We then keep the perturbed p̃′s that deliver large values for θ (and perturb them further),
and discard those with small values of θ. We iterate until θ cannot be increased any longer. (This is similar to genetic
algorithm, or to stochastic search methods more generally.)
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function of π – see equation (13)) makes it difficult to find points within that set randomly. Further, it

is easy for perturbation methods to “exit” the set, increasing the costs of finding the maximum θ. Note

that searching over π to maximize θ does not suffer from this problem because finding admissible values

(and updated directions) for π are computationally easier.

These trade-offs led us to consider an algorithm that exploits the structure of the problem and combines

the strengths of these alternative search procedures. Intuitively, we move in the “p̃-world” (to avoid solving

the nonlinear equation (13) repeatedly), but we keep a close eye on the “π-world” (to keep track of the

model restrictions and search in relevant directions). Searching in relevant directions without solving (13)

and computing the numerical gradient of ϕ in every step improves substantially how fast θ moves on each

iteration to the maximum.

B.1 The Algorithm

We now present our proposed algorithm. To guarantee that p̃ are positive and add up to one, we work

with the transformation

δ̃ = ln p̃−J − ln p̃J ,

where ln p̃a is the X̃ × 1 vector with elements ln p̃a(x), for all x ∈ X̃ , and ln p̃−J stacks ln p̃a for all a ̸= J .

The functions of p̃, namely b̃−J and ϕ, are adjusted accordingly. To simplify the notation, we drop the

subscript of the function b̃−J , as well as the argument p of the function ϕ. The algorithm proceeds as

follows (we discuss the most important steps below):

The Proposed Stochastic Search Algorithm:

1. Initialize k = 0 ∈ N.

Set πk satisfying Reqπk = req and Riqπk ≤ riq. Find δ̃
k
by solving (13) with πk.

Calculate θk = ϕ(δ̃
k
, πk).

2. Increment k.

3. Set (perturbed) direction ∆πk. Given ∆πk, set direction for δ̃
k
,

∆δ̃
k
=

(
∂b̃

∂δ̃

)−1

M̃H∆πk,

where
(
∂b̃

∂δ̃

)
is the derivative of b̃ with respect to δ̃ evaluated at δ̃

k
.

4. Solve for α ∈ R:

α∗ = argmax
α

ϕ( δ̃
k
+ α∆δ̃

k
, πk + α∆πk ),
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subject to the constraints (22), allowing (13) to be violated at most by a

tolerance level, tol > 0.

5. Set δ̃
∗
= δ̃

k
+ α∗∆δ̃

k
and π∗ = πk + α∗∆πk.

6. Update δ̃
k
:

δ̃
k+1

= δ̃
∗
−

(
∂b̃∗

∂δ̃

)−1 (
b̃∗ − M̃g − M̃Hπ∗

)
,

where
(
∂b̃∗

∂δ̃

)
is the derivative of b̃ with respect to δ̃ evaluated at δ̃

∗
, and define

b̃∗ = b̃( δ̃
∗
). Set πk+1 = π∗.

7. Calculate θk+1 = ϕ(δ̃
k+1

, πk+1).

If
∥∥∥θk+1 − θk

∥∥∥ ≤ ϵ go to 8; otherwise go to 2.

8. Set π = πk+1. Solve (13) exactly for π, and get δ̃. Return θU = ϕ(δ̃, π).

We now discuss the rationale for each step. In Subsection B.2, we provide further details for the

implementation of each step, as well as a discussion about the overall cost of the algorithm.

Step 1. The first step requires finding a π that satisfies the model restrictions (8) and (9) so that

we obtain an initial p̃ (or δ̃) that lies inside the (potentially “thin”) set P̃I by construction, and a

corresponding θ in the identified set ΘI . Such initial π can be obtained as any solution to the following

quadratic programming problem

min
π

(Reqπ − req)
′
(Reqπ − req) + (Riqπ − riq)′+(Riqπ − riq)+, (B1)

where (x)+ = max {x, 0}. Another option is to start with a few points and project them into the identified

set for π, which can also be done easily. Of note, if the minimum of (B1) is strictly greater than zero,

then there is no π that satisfies all the constraints. Given π, we can solve (13) numerically using some

quasi-Newton method.

Step 3. After we have our starting point π (and corresponding δ̃), we need to obtain an updated

direction ∆π (and ∆δ̃). Overall, the idea of first providing a direction and only then optimizing (as we

do here) is a standard way to solve complex optimization problems. Ideally, we would use the gradient of

ϕ, but calculating this gradient can be expensive in some cases, as mentioned previously. An alternative

is to either get a completely random direction for ∆π (e.g., ∆π = η, where η is a random vector drawn
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from, say, a multivariate standard normal distribution), or a random direction weighted by states that

are more important (e.g., in terms of the ergodic distribution of the state variables).32

It is also important to not let an updated point get too close to the boundary of the inequality

constraints (9). We follow the insights of interior-point methods to help the algorithm not get stuck

early on a boundary. Specifically, we add a term to ∆π that moves it way from the most binding ones.

Formally,

∆π = η − λ
(

1

riq −Riqπ

)′
Riq,

where λ = λ0
N , with λ0 > 0 and N = the number of iterations; and

(
1

riq−Riqπ

)
denotes the m× 1 vector

with the reciprocal elements of the vector riq−Riqπ (recall that m is the number of inequality restrictions,

so that Riq is m× (A+ 1)X and riq is m× 1). The adjustment term λ
(

1
riq−Riqπ

)′
Riq is a common way

to handle inequality constraints. This is a simple implementation of an interior-point method.33

We link the direction ∆δ̃ with ∆π based on equation (13). We do so because completely random

directions on p̃ (or more precisely, on δ̃) will likely push p̃ outside of the “thin” set P̃I . The direction ∆δ̃

is obtained by differentiating the inverse function b̃−1 with respect to π in the direction ∆π.

Step 4. Given ∆δ̃, we now find how far in that direction we should go without moving away too

much from the identified set P̃I . To that end, we allow for small violations in equation (13) when searching

for α∗. Specifically, we replace the restriction (13) by
∥∥∥b̃− M̃g − M̃Hπ

∥∥∥ ≤ tol, where ∥.∥ is some matrix

norm and tol > 0 is a tolerance level. Here, the optimization is one-dimensional (line-search). We use a

simple golden rule search, but even more crude approaches work.

Step 5. We now update both δ̃ and π in their respective directions α∗∆δ̃ and α∗∆πJ , where α
∗ is

obtained in step 4.

Step 6. This step is important because at the end of step 5 it is common that the intermediary δ̃
∗

violates the nonlinear system (13) by the maximum tolerance tol. So this step insures that we move δ̃

back to the set that violates (13) by strictly less than tol. Not doing so would constrain the directions

that ∆δ̃ can move in the next iteration and slow down the algorithm considerably.

32In practice, to weight the random direction η by states that are more important in terms of the steady-state distribution,
we draw η from a normal distribution with zero mean and a diagonal variance-covariance matrix with a diagonal that equals
the probabilities of the state variables under the ergodic distribution. The ergodic distribution is based on the latest updated
p̃.

33Intuitively, to maximize f (x) subject to g (x) ≤ 0, an interior-point method can make use of the logarithmic “barrier
function” B (x, λ) = f (x) − λ

∑n
i=1 log

(
gi (x)

)
, where n is the dimension of g. The gradient of B is ∂f

∂x
− λ

∑n
i=1

1
g(x)

∂g
∂x

.

The idea is that when some element gi (x) is close to zero for some trial x, the barrier function “explodes” to minus infinity,
so that the algorithm does not get stuck on a boundary. However, because the solution may indeed lie on the boundary, it
is necessary to allow for the possibility that gi (x) = 0 at the optimum. To do so, λ must converge to zero as the number of

iterations grows larger. In the present case, we take λ = λ0
N

→ 0 (as N → ∞). The term
(

1
riq−Riqπ

)′
Riq is the derivative of

the sum of the logs of (riq −Riqπ) with respect to π (i.e., the derivative of λ
∑
log(riq −Riqπ), where the summation runs

from 1 to m).
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Step 7. The ϵ > 0 in step 7 specifies the tolerance for convergence. We focus on convergence

on θ because verifying a “derivative equals zero” condition for convergence is difficult given the high-

dimensionality of the problem and the complexity of computing derivatives of ϕ (analytically or numeri-

cally).

Step 8. After convergence, we solve the nonlinear system (13) exactly to guarantee that p̃ lies in

the identified set P̃I , and so that the computed θU belongs to ΘI .

One of the main computational cost of this algorithm is to calculate the inverse matrix
(
∂b̃

∂δ̃

)−1
, used

in steps 3 and 6. In the next subsection we discuss conditions under which calculating
(
∂b̃

∂δ̃

)−1
is not as

costly.

B.2 Further Comments on Implementation

We now comment on the computational costs of the algorithm.

1. The matrix Ma equals (I − βFa) (I − βFJ)
−1, which involves the inversion of a X ×X matrix. The

computational cost of inverting a matrix is of the order of O(X3) in general, but there are ways to

reduce this cost. When action J is renewal or terminal, the matrix simplifies toMa = I+β (FJ − Fa),

for all a ∈ A, which can be calculated fast since it involves no matrix inversion (see footnote 7 in

Online Appendix G). When there are no terminal or renewal actions, computing Ma requires

calculating the inverse of (I − βFJ). As FJ is a transition matrix, we can approximate that inverse

based on the geometric series:

(I − βFJ)
−1 =

∞∑
τ=0

βτF τ
J .

By truncating the series, we can reduce the computational cost and obtain a reasonable approxi-

mation (more on that below). Note that both Ma and M̃a can be precomputed, so they do not add

costs to the iterative procedure.

2. When we find the direction ∆δ̃ implied by ∆π we need to solve the linear system

∆δ̃ =

(
∂b̃

∂δ̃

)−1

M̃H∆π.

Usually this would cost O(A3X3). However, we can take advantage of the structure of the function

b̃. Recall that b̃a (p̃) = M̃aψ̃J (p̃)− ψ̃a (p̃). Let ψ̃−J stack ψ̃a for all actions a ̸= J . For expositional

convenience, consider the case of three actions with reference action J = 3:

b̃ = M̃−J ψ̃J − ψ̃−J = δ̃ −


I
I

− M̃−J

 log

1 +

J−1∑
j=1

exp(δ̃j)

 ,
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where I is the identity matrix. So

∂b̃

∂δ̃
= I−


I
I

− M̃−J

[P̃1 P̃2

]
,

where P̃j is an X ×X diagonal matrix with p̃j as its entries.

Now we need its inverse

(
∂b̃

∂δ̃

)−1

= I+


I
I

− M̃−J


I−

[
P̃1 P̃2

]
I
I

− M̃−J




−1 [
P̃1 P̃2

]

= I+


I
I

− M̃−J

(I− P̃1 − P̃2 + P̃1M̃1 + P̃2M̃2

)−1 [
P̃1 P̃2

]
,

where the first equality follows from the Woodbury formula (I−DB)−1 = I+D(I−BD)−1B.

Next, notice that P̃J = I− P̃1 − P̃2 and that M̃j = (I− βF̃j)(I− βF̃J)
−1. Therefore,

(
∂b̃

∂δ̃

)−1

= I+


I
I

− M̃−J

 (I− βF̃J)
(
P̃J(I− βF̃J) + P̃1(I− βF̃1) + P̃2(I− βF̃2)

)−1 [
P̃1 P̃2

]

= I+ β

F̃1 − F̃J

F̃2 − F̃J

(I− β (P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1 [
P̃1 P̃2

]
.

This reduces the cost to O(X3) because the matrix

(
I− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1

has dimension X ×X.

But we can improve on that by noticing that for a given vector v,

(
I− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1

v =

∞∑
τ=0

βτ
(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)τ
v.

Because P̃J F̃J + P̃1F̃1 + P̃2F̃2 is a transition matrix, we know that

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)τ
v → v∗
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for some v∗ as τ goes to infinity.34 Therefore, we can approximate

(
I− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1

v ≈
K−1∑
τ=0

βτ
(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)τ
v

+
βK

1− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)K
v,

which can be computed in O(KX2) operations. K can be taken small because we only need a

reasonable approximation (and, as long as the exogenous states are not too persistent, it should mix

fast).

C Inference Procedure

We now provide the details of our computational algorithm for inference, followed by our recommendations

for the choice of initial values for the optimization problems and the tuning parameters. Then, we discuss

the computational costs of our proposed approach.

C.1 Computational Algorithm

In this section, we focus on the auxiliary functions used in Algorithm 1 presented in Section 6.1 of the

main paper. Recall that our approach consists of four main steps: (i) we approximate ĴN from below in

the main sample; (ii) we approximate Ĵ∗
hN

from above in each subsample; (iii) we obtain the 1−α critical

values ĉ1−α; and, finally, (iv) we construct the 1−α confidence set CS = [θLci, θ
U
ci] using the approximations

to both functions ĴN (θ) and ĉ1−α(θ).

In the first step of Algorithm 1, we make use of the function Approximations(.), which calculates

the sequence of intervals, [θL(ϵk), θ
U (ϵk)], with the corresponding solutions for π. This function is ex-

plained in Algorithm 2 below. It distinguishes whether the calculations are done in the main sample

(type = sample) or in the subsamples (type = subsample), and it proceeds in four stages. First, for

each proposed vector of initial value πinitq , it solves the optimization problems (21)–(22) in the main data,

regardless of the type selected – as shown in lines 4–5. To solve these problems, it uses the auxiliary

function Optimization(.), presented in Algorithm 3, which solves the relaxed problems (30)–(31) for

any given ϵ.35 Then, if the approximations are done in the subsamples (type = subsample), the routine

repeats the optimizations in each subsample, with recentering – incorporated via the input bctr−J(.), eval-

uated at either θUq or θLq , obtained from the solution calculated in the main sample. Next, it selects the

best outcomes for θU , θL, πU , and πL based on the different initial values used, as presented in line 13.

34Under the ℓ1 norm, this convergence is a contraction and the contraction coefficient is known as Dobrushin ergodic
coefficient.

35Although not explicit in Algorithm 3, the Optimization function also receives as an input the definition of the function
of interest ϕ, as well as the analytical gradient of ϕ if provided by the researcher (otherwise, it calculates the numerical
derivative, as usual). One can also provide the optimization method, e.g., the Newton method.
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Importantly, all the calculations up to this point are for ϵ0 = 0. Finally, in the fourth stage, we solve the

relaxed problem (30)–(31) in the grid set ϵ = {ϵk}Kk=1, using as the initial value for each ϵk, k = 1, ...,K,

the solution obtained from the previous grid point ϵk−1, in sequence. This last step is performed either

in the main data or in the subsamples depending on the input type selected.

After the sequence of intervals [θL(ϵk), θ
U (ϵk)], with their corresponding π’s, are obtained on the grid

ϵ, Algorithm 1 approximates ĴN from below using the auxiliary function J (.). The calculation of this

auxiliary function J (.) is presented at the middle panel of Algorithm 3. It takes the set of intervals

[θL(ϵk), θ
U (ϵk)], the grid points ϵ, and the type of approximation (either from below or from above) as

inputs and returns a piecewise constant function J ± : Θ→ R.

In the third step of the main Algorithm 1, the same approximations done in the main sample are

repeated in all subsamples (but now from above). There, as noted before, we employ recentering to

improve finite sample performance. To do so, we use the auxiliary function Recentering(.), presented

at the bottom panel of Algorithm 3. This function takes the set of intervals [θL(ϵk), θ
U (ϵk)], together with

their corresponding π’s, the grid points ϵ, and the main data p as inputs and returns a piecewise constant

function from Θ to RX(A−1). Recentering is a function of θ because the problem (28), upon which the

recentering is defined (see equation (29)), depends explicitly on the value of θ under consideration.
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Algorithm 2 Auxiliary Function: APPROXIMATIONS

1: function Approximations(ϵ, πinit, p,bctr−J(·), type)

2: b−J ← −M(p)ψ(p) // Compute vector b−J , based on equation (4)

3: for q = 1, . . . ,#πinit do

4: (θUq , π
U
q )← Optimization(0, πinitq , b−J(p), p,max) // Solve (21)–(22) for maxϕ in the sample

5: (θLq , π
L
q )← Optimization(0, πinitq , b−J(p), p,min) // Solve (21)–(22) for minϕ in the sample

6: end for

7: if type = subsample then

8: for q = 1, . . . ,#πinit do

9: (θUq , π
U
q )← Optimization(0, πqU , b−J − bctr−J(θ

U
q ), p,max) // Solve (21)–(22) for maxϕ in

the subsample, with recentering

10: (θLq , π
L
q )← Optimization(0, πqL, b−J − bctr−J(θ

L
q ), p,min) // Solve (21)–(22) for minϕ in the

subsample, with recentering

11: end for

12: end if

13: θU (0)← maxq θ
U
q ; πU (0)← argmaxq θ

U
q ; θL(0)← minq θ

L
q ; πL(0)← argminq θ

L
q // Select

best outcomes from different initial values

14: if type = sample then

15: for k = 1, . . . ,#ϵ do // Solve optimizations in the grid set ϵ

16: (θU (ϵk), π
U (ϵk))← Optimization(ϵk, π

U (ϵk−1), b−J), p,max)

17: (θL(ϵk), π
L(ϵk))← Optimization(ϵk, π

L(ϵk−1), b−J), p,min)

18: end for

19: else type = subsample

20: for k = 1, . . . ,#ϵ do // Solve optimizations in the grid set ϵ

21: (θU (ϵk), π
U (ϵk))← Optimization(ϵk, π

U (ϵk−1), b−J − bctr−J(θ
U (ϵk−1)), p,max)

22: (θL(ϵk), π
L(ϵk))← Optimization(ϵk, π

L(ϵk−1), b−J − bctr−J(θ
L(ϵk−1)), p,min)

23: end for

24: end if

25: return (θU (·), πU (·), θL(·), πL(·))

26: end function
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Algorithm 3 Auxiliary Functions

1: function Optimization(ϵ, πinit, b−J , p, type) // Compute the max and the min of θ

2: if type = max then

3: θ ← maxπ ϕ(p̃, π; p) subject to (31) with πinit as starting value for the optimization routine.

4: π ← argmax of previous optimization

5: else if type = min then

6: θ ← minπ ϕ(p̃, π; p) subject to (31) with πinit as starting value for the optimization routine.

7: π ← argmin of previous optimization

8: end if

9: return (θ, π)

10: end function

1: function J (θU (·), θL(·), ϵ, type) // Compute the piecewise constant functions J : Θ→ R

2: if θU (ϵk−1) < θ ≤ θU (ϵk) or θL(ϵk−1) > θ ≥ θL(ϵk) for some k then

3: if type = above then

4: J(·)← ϵk

5: else if type = below then

6: J(·)← ϵk−1

7: end if

8: else if θL(0) ≤ θ ≤ θU (0) then

9: J(·)← 0

10: end if

11: return J(·)

12: end function

1: function Recentering(θU (·), πU (·), θL(·), πL(·), ϵ, p) // Compute the piecewise constant

function bctr−J : Θ→ RX(A−1)

2: b−J ← −M(p)ψ(p) // Compute vector b−J , based on equation (4)

3: if θU (ϵk−1) < θ ≤ θU (ϵk) for some k then

4: bctr−J(θ)← b−J −MπU (ϵk)

5: else if θL(0) ≤ θ ≤ θU (0) then

6: bctr−J(θ)← 0

7: else if θL(ϵk−1) > θ ≥ θL(ϵk) for some k then

8: bctr−J(θ)← b−J −MπL(ϵk)

9: end if

10: return bctr−J(·)

11: end function
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C.2 Choice of Tuning Parameters

Our inference algorithm requires setting several tuning parameters, which we now discuss.

Initial Values for Optimization. Here, we focus on the choice of the initial values for the optimization

problems (30)–(31), presented in the main text. We advocate the standard practice of using several

different starting values to mitigate the risks associated with local optima. We suggest starting with

several randomly generated points vl ∈ R(A+1)X and find their projections onto the identified set by

solving, for each point,36

min
π∈R(A+1)X :

Reqπ=req ,Riqπ≤riq ,

M̂Nπ=b−J (p̂N )

[vl − π]′[vl − π].

We implement the same procedure in the main sample and in each subsample. Importantly, this set of

initial values is used only to solve for the identified set – i.e., for the problem with ϵ0 = 0. For any relaxed

problem with ϵk > 0, we recommend employing the solution to the optimization problem with ϵk−1 as the

initial value. The continuity structure of our problem indicates that the solution to the relaxed problem

ϵk−1 is an excellent initial point for the subsequent relaxed optimization ϵk, for all k.

Grid Set. When it comes to choosing the grid points, 0 ≡ ϵ0 < ϵ1 < ... < ϵK ≡ ϵmax, we suggest

trying different grids in the main sample to determine the largest value of ϵ and the number of points K

before subsampling. Specifically, the largest value for the grid, ϵmax, should generate an (outer) set for θ,

[θL(ϵmax), θ
U (ϵmax)], that is large enough to almost certainly include the confidence set CS. To achieve

this, we recommend computing the identified set [θL(0), θU (0)] first and then increasing ϵ until the set

[θL(ϵmax), θ
U (ϵmax)] is either uninformative or sufficiently large based on the sample size. For example,

suppose θ is the average probability of entry in a dynamic entry/exit model – so that θ ∈ Θ = [0, 1] –

and the estimated identified set is Θ̂I = [0.2, 0.3]. To be conservative, we may choose an ϵmax such that

[0.01, 0.9] ⊆ [θL(ϵmax), θ
U (ϵmax)] ⊆ [0, 1]. With a large sample size, we may choose a smaller ϵmax, e.g., a

value such that [0.1, 0.4] ⊆ [θL(ϵmax), θ
U (ϵmax)] – i.e., an outer set that is much closer to the estimated

identified set. The main trade-off when choosing ϵmax is between greater computational cost (from a

larger ϵmax) and not covering the CS with the initial outer set (from a too-small ϵmax). Indeed, if ϵmax is

too small, the inference procedure generates a confidence set that is the intersection between the correct

confidence set and [θL(ϵmax), θ
U (ϵmax)]. If the researcher finds that one of the confidence set’s extremes

is equal to θL(ϵmax) or θU (ϵmax), it is clear that ϵmax should be increased and the inference procedure

36This procedure assumes the identified set is non-empty. This can be checked by solving the quadratic problem

min
π∈R(A+1)X :

Reqπ=req,Riqπ≤riq

[b−J(p̂N )− M̂N π]′ Ω̂N [b−J(p̂N )− M̂N π].

If a solution π to this problem satisfies b−J(p̂N ) = M̂N π, then we know that the identified set is non-empty. Otherwise, the
identified set is empty.
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performed for the new points in the grid.

Regarding the number of points K, although we acknowledge that it is not trivial to provide precise

guidance since the proper choice depends on how simple/complex the particular computational problem

is and how quickly the function J(θ) increases as θ “moves away” from the identified set, we note that, in

our experience, starting with about 50 to 100 points for the grid generates almost the same results as finer

grids. Noticing that our procedure, based on approximations to ĴN and Ĵ∗
hN

from below and from above,

respectively, is conservative for coarse grids in finite samples, a too coarse grid generates a confidence set

that is larger than necessary. Consequently, increasing the number of grid points K can only reduce the

length of the confidence set, while preserving the (minimum) nominal size. Hence, one can begin with a

relatively coarse grid and gradually increase the number of grid points until the confidence set stabilizes.

Finally, once the researcher has determined ϵmax and K, we recommend using an equidistant grid

with K points from 0 to ϵmax for the main sample, and a grid with K points from 0 to N
hN
× ϵmax for

the subsample. That is because failing to rescale the grid in the subsamples may lead to the lack of

overlapping between the values that the test statistic NĴ may take in the sample and the distribution of

the test statistic in the subsamples hN Ĵ
∗, since N ≫ hN , which would invalidate the approximation to

the critical value ĉ1−α.

Approximations J − and J +. As noted earlier, we recommend approximating ĴN from below and

Ĵ∗
hN

from above to be conservative in finite samples when the grid set chosen is coarse. Here, we illustrate

this rationale using Figure C1, constructed based on the model presented in the Monte Carlo section,

using the set of Restrictions 1; see Appendix D. Specifically, Figure C1, panel (a), shows the step-function

approximations on a grid set with K = 10 equally-distant points and ϵmax = 1. Panel (b) presents the

(conservative) approximated confidence set based on the approximation to ĴN from below. (As an aside,

it is worth noting that the true critical value function in the figure, ĉ1−α(θ), varies with θ, pointing to the

importance of treating this function carefully in the inference procedure.)

C.3 Computational Costs

We now turn to the computational costs of our inference procedure. As mentioned previously, our al-

gorithm is based on solving problem (30)–(31) multiple times. This accounts for the majority of the

computational costs. In the absence of the equality restrictions (8), the computational cost of solving this

problem grows roughly as X2, which is consistent with our experience and Monte Carlo simulations.

Incorporating the equality restrictions (8) reduces the computational cost by decreasing the dimension

of the search. Our Monte Carlo simulations are consistent with this: as we add Restriction 3 (i.e., scrap

values do not depend on the exogenous states W ), the average time required to perform inference drops

substantially for any sample size when compared to the average time when only Restrictions 1 and 2 are

imposed.
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(a) J function and approximations, J− and J+ (b) Approximated and Exact Confidence Sets

Figure C1: Approximating Functions and Confidence Sets.

Shape restrictions (9), however, do not necessarily reduce computational costs. In fact, in our experi-

ence, they can increase the likelihood of the algorithm stopping at a local optimum. Thus, we recommend

trying multiple starting points, as discussed previously, especially when many inequality restrictions are

used. Once again, this is consistent with our Monte Carlo results: adding Restrictions 2 (which only in-

cludes shape restrictions) on top of Restrictions 1 can reduce the average time for estimation and inference,

though not always.

D A Monte Carlo Study

In this section, we present a Monte Carlo study to illustrate the finite-sample performance of our inference

procedure. We start with the setup, and then we show the results.

D.1 Setup

We extend the firm entry/exit problem presented in Section 5 of the main text, allowing now for a larger

state space. Specifically, we assume the presence of three exogenous states, wt = (w1t, w2t, w3t), reflecting

demand and supply shocks. The exogenous states are independent to each other, and each follows a

discrete-AR(1) process withW support points (obtained by discretizing latent normally-distributed AR(1)

processes). The (residual) inverse demand function is linear, Pt = w̄ + w1t + w2t − ηQt, where Pt is the

price of the product, Qt is the quantity demanded, w̄ is the intercept, w1t and w2t are demand shocks,

and η is the slope. We assume constant marginal costs mct (i.e., mct does not depend on Qt), and let the

supply shocks w3t affect marginal costs. To simplify, we just take mct = w3t. Variable profits are then

vpt = (w̄+w1t+w2t−mct)2/4η. The idiosyncratic shocks ε follow the type 1 extreme value distribution.

The model parameters are presented in Table D1.
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Table D1: Parameters of the Monte Carlo Data Generating Process

Demand Function: w̄ 6.8 w1t ∼ Normal AR(1): ρ01 0
η 4 ρ11 0.75

σ21 0.02

Payoff Parameters: s 4.5 w2t ∼ Normal AR(1): ρ02 0
ec 5 ρ12 0.75
fc 0.5 σ22 0.025

Scale parameter: σ 1 w3t ∼ Normal AR(1): ρ03 0
ρ13 0.75

Discount Factor: β 0.9 σ23 0.03

The counterfactual we consider is the same as in Section 5: a subsidy that reduces entry costs by

20%. The target parameter θ is the long-run average probability of staying in the market given the

subsidy, where the long-run average is based on the ergodic distribution of the state variables; the specific

formula for θ is provided in Appendix F (but note that here we do not take the difference between the

counterfactual and the baseline average probabilities).

In order to analyze the sensitivity of the target parameter θ to alternative model restrictions, we follow

the example again and impose Restrictions 1–3, as explained in Section 5.37

We generate 1000 Monte Carlo replications for each of the following sample sizes: the small sample,

with N = 100 firms on separated (independent) markets and T = 5 time periods, and the large sample,

with N = 1000 firms and T = 15 time periods. For the first sample period, the value of the state variables

are drawn from their steady-state distributions. Given that each exogenous state variable wjt can take

W values, the dimension of the state space is X = 2 ×W 3. We consider three sizes for the state space:

X = 16, 54 and 250, which correspond to W = 2, 3 and 5. The choices of the state space were dictated

by the sample size, not by computational constraints, given that the method makes use of a frequency, or

a nonparametric estimator for the CCP in the first stage. As discussed in the main text and in Section B

of this appendix, it is feasible to solve the optimization problem (21)–(22) for state spaces that are larger

in size.

In each sample, we estimate the lower and upper bounds for the target parameter, θL and θU , by

solving the minimization and maximization problems (21)–(22). We estimate CCPs using frequency

estimators, and we use the true transition matrix F , both in calculating test statistics and critical values.

(The results do not change significantly when we estimate transition probabilities as well.) We solve the

problem (21)–(22) using the Knitro MATLAB function. We randomly generated a set of 25 initial values

37When we impose Restriction 3, we replace the inequalities defined in Restriction 1 by their average versions. This does
not affect the identified set, but it improves the finite-sample behavior of the estimators when the sample size is small and
the state space is large.
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for the optimizations as discussed in Appendix C. We provide the analytical gradient of ϕ as explained

in Appendix H.

We specify Ω̂N to be a diagonal matrix with diagonal terms given by the square-root of the ergodic

distribution of the exogenous state variables, implied by the transition process Fw. We opt for this

weighting matrix so that deviations on more visited states receive greater weights and are, therefore,

considered more relevant.

We calculate 90% confidence sets for θ using the procedure described in Section 6 of the main text and

in Section C of this appendix. Specifically, in each sample, we approximate ĴN (θ) from below using a grid

with a range from ϵ0 = 0 to ϵmax = 0.1 in an equally spaced grid with K = 50 points. For each sample,

we generate 1000 subsamples with size that is approximately hN ≈ N
2
3 . More precisely, we implement

a standard i.i.d. subsampling, resampling firms over the full time period: For the small sample we draw

22 firms randomly, and for the large sample, we draw 100 firms. For the subsamples, we used a grid

with a range from ϵmin = 0 to ϵmax = 1 in an equally spaced grid with K = 50 points, and we have

approximated Ĵ∗
hN

from above. The computations were run on the FASRC Cannon cluster supported by

the FAS Division of Science Research Computing Group at Harvard University.

D.2 Monte Carlo Results

Main Results. We now discuss the results of the Monte Carlo simulations. In the baseline scenario,

the long-run average probability that the firm stays in the market is 90.5%, while the long-run average

probability of being active reduces to 83.3% in the counterfactual scenario (so that θ = 0.833). The

impact of the entry subsidy is to reduce the long-run average by 7.2 percentage points. Similar to the

example presented in the main paper, the entry subsidy increases the exit rate of forward-looking firms,

which translates into firms staying less often in the market in the steady state. This result is invariant

to the alternative discretizations of the state space, since the discretizations are performed on the same

underlying AR(1) processes.

Table D2 presents the Monte Carlo results. The top, middle, and bottom panels show the results for

the alternative state spaces: small (X = 16), medium-sized (X = 54), and large (X = 250), respectively.

In each panel, the top subpanel presents the results for the small sample (N = 100, T = 5), and the bottom

subpanel, for the large sample (N = 1000, T = 15). In each subpanel, we show for each alternative set

of Restrictions 1–3, (i) the populational (true) identified set, (ii) the average estimates of the lower and

upper bounds, θL and θU , (iii) the average bias of the estimated bounds, (iv) the average endpoints and

the average length of the 90% confidence sets, (v) the coverage probability of the confidence sets, and (vi)

the average time taken to estimate θL and θU (in seconds), and the average time taken to compute the

confidence intervals (in minutes).

The identified sets under the alternative Restrictions 1–3 are all compact intervals containing the true

θ (Proposition 5), and vary slightly with the size of the state space. To be concrete, for the medium-
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sized state space (X = 54), Restriction 1 alone is highly informative: the counterfactual long-run average

probability of being active is between 75% and 90.5%. It does however include the baseline probability

(at the upper end of the interval). Adding Restriction 2 reduces the upper bound to 87.8%, which suffices

to identify the sign of the impact of the subsidy. Adding Restriction 3 pushes the upper bound further

down to 86.8%.

In all cases, the estimated lower and upper bounds of the identified sets appear to be consistent,

with smaller biases in larger samples. The coverage probabilities of the confidence sets converge to the

nominal level 90%, as expected (Theorem 1). And the confidence sets’ average lengths are wider (though

not substantially) than the length of the true identified sets, for all sample sizes and state spaces. E.g.,

in the small state space case and large sample, the average length of the confidence set is 0.1774 under

Restriction 1, while the length of the (true) identified set is just 0.1533; and in the large state space and

small sample, the average length of the confidence set under the same restriction is 0.2512.

Naturally, the finite sample performance of our inference procedure depends on both the state space

and the sample size. In the larger state space cases, we obtain slightly greater average biases for the

point estimates. These are expected: larger state spaces imply less (effective) degrees of freedom, as the

number of model parameters increases with the state space (recall that π is an (A+ 1)X vector).

In terms of the computer time required to solve the minimization and maximization problems (21)–

(22), it takes approximately 0.04 seconds to solve both optimization problems under Restrictions 1 and

1–2, and that time is reduced to just 0.01 seconds under Restrictions 1–3, in the small state space case.

Subsampling is computationally intensive but feasible: for the same state space, the average time required

to run it varies from two minutes under Restriction 1 to just one minute under Restrictions 1–3.

As expected, it takes longer to solve (21)–(22) when the state space is larger. E.g., under Restriction

1, it takes approximately 0.3 seconds on average in the medium-sized state space case (X = 54), and

approximately 6 seconds on average in the large state space case (X = 250). It also takes longer to run

the subsampling procedure: between 6 and 26 minutes on average in the medium-sized state space, and

between 125 and 521 minutes on average in the large state space, depending on the sample size and the

restrictions imposed. It is important to stress, however, that the average computer time here is based on

a sequential implementation of subsampling, which does not take advantage of parallelization.

Robustness Analysis. Next, we investigate the robustness of our results to (a) the choice of the

subsample size, (b) the selection of the grid points, and (c) the approximations to our test statistics,

JN (θ) (whether from below or from above). To facilitate the comparisons, we focus only on the case with

medium-sized state space (X = 54) and large sample size (N = 1000, T = 15).

Table D3 presents the results when we select the subsample size to be hN = N/4, following the

suggestion of Ciliberto and Tamer (2009). This implies that we randomly sample 250 firms instead of

sampling hN = N
2
3 = 100 firms, as suggested by Bugni (2016) and presented in Table D2. All results,
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including the coverage probability and computational time, are strikingly similar to each other.

Table D4 presents the Monte Carlo results obtained by varying the grid points and focusing on

Restriction 1 for simplicity. We consider a range from ϵ0 = 0 to ϵmax = 0.1 using an equally spaced grid

and vary the number of points K. Specifically, we study four scenarios: (i) a fine grid with K = 100

points, (ii) our main grid set with K = 50 points, which was previously presented in Table D2 and is

replicated here for convenience, (iii) a coarser grid with K = 25 points, and (iv) an even coarser grid with

K = 12 points.

The results confirm the intuition that finer grids provide more accurate outcomes at the cost of

increased computational time. Notably, the finer grids (K = 100 and K = 50) yield correct coverage

probabilities, while the coarser grids (K = 25 and K = 12) result in more conservative confidence

intervals with coverage probabilities above 90%. As for computational time, using finer grids takes longer

to compute the confidence sets compared to coarser grids. For instance, the average computation time is

32 minutes for the finest grid (K = 100) and only 10 minutes for the coarsest grid (K = 12). However,

it is important to note that the computational time increases less than linearly with the number of

grid points K. This is likely due to the similarity between the relaxed problems based on ϵk and ϵk+1,

k = 0, . . . ,K − 1, where the solution for ϵk provides an excellent initial value for the problem with ϵk+1.

Consequently, solving a larger number of relaxed problems as the grid gets finer does not significantly add

to the computational cost. (Note that, in contrast, when ϵk and ϵk+1 are further apart, in a coarser grid,

then ϵk is not as good an initial value for the relaxed problem with ϵk+1 as when ϵk and ϵk+1 are closer

together.) Given these findings, we recommend using finer grid points in practice due to their ability to

provide more accurate outcomes, despite the moderately longer computational time.

Table D5 presents the results when we explore different ways of approximating our test statistics,

focusing as before on Restiction 1. Recall that, in the main sample, we approximate ĴN from below using

J −, while in the subsamples we approximate Ĵ∗
hN

from above using J +. This approach is adopted to

avoid undercoverage in finite samples when the set of grid points is coarse. In Table D5, we now showcase

the results when we approximate our test statistics from above in both the main sample (leading to under-

coverage) and all subsamples (leading to overcoverage). Our goal is to investigate which approximation

dominates. Notably, our original grid (K = 50) and the finer grid (K = 100) yield coverage probabilities

that align with the correct nominal size. However, the use of coarser grids (K = 12 or K = 25) results in

undercoverage. For K = 12, in particular, the undercoverage can be substantial (0.845), while our pro-

posed solution is reasonably conservative in this case (0.942, presented in Table D4). This undercoverage

appears to happen because N ≫ hN implies that the approximation error to the test statistic in the main

sample (N × ĴN ) dominates the approximation error to the critical value (based on hN × Ĵ∗
hN

).
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Table D2: Monte Carlo Results

Target Parameter: θ = Long-run Average Probability of Being Active

Small State Space: X = 16

T = 5, N = 100 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7500, 0.9033] [0.7500, 0.8765] [0.7500, 0.8661]
Average Estimated Bounds [0.7582, 0.9036] [0.7580, 0.8722] [0.7580, 0.8655]
Average Bias [0.0082, 0.0003] [0.0080, -0.0038] [0.0080, -0.0010]
Confidence Sets: Average Endpoints [0.6761, 0.9205] [0.6760, 0.8943] [0.6757, 0.8854]
Confidence Sets: Average Length 0.2444 0.2183 0.2097
Coverage Probability (90% nominal) 0.8930 0.8870 0.8700
Time Estimation (sec) 0.04 0.04 0.01
Time Inference (min) 2 2 1

T = 15, N = 1000 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7500, 0.9033] [0.7500, 0.8765] [0.7500, 0.8661]
Average Estimated Bounds [0.7507, 0.9034] [0.7507, 0.8762] [0.7507, 0.8657]
Average Bias [0.0007, 0.0001] [0.0007, -0.0003] [0.0007, -0.0004]
Confidence Sets: Average Endpoints [0.7302, 0.9076] [0.7302, 0.8806] [0.7302, 0.8712]
Confidence Sets: Average Length 0.1774 0.1504 0.1410
Coverage Probability (90% nominal) 0.8900 0.8880 0.9060
Time Estimation (sec) 0.04 0.04 0.01
Time Inference (min) 2 2 1

Medium-sized State Space: X = 54

T = 5, N = 100 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7501, 0.9052] [0.7501, 0.8781] [0.7501, 0.8684]
Average Estimated Bounds [0.7595, 0.9034] [0.7591, 0.8709] [0.7591, 0.8646]
Average Bias [0.0094, -0.0018] [0.0090, -0.0072] [0.0090, -0.0038]
Confidence Sets: Average Endpoints [0.6594, 0.9248] [0.6587, 0.9066] [0.6587, 0.8939]
Confidence Sets: Average Length 0.2654 0.2479 0.2352
Coverage Probability (90% nominal) 0.9230 0.918 0.8970
Time Estimation (sec) 0.32 0.36 0.03
Time Inference (min) 26 20 11

T = 15, N = 1000 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7501, 0.9052] [0.7501, 0.8781] [0.7501, 0.8684]
Average Estimated Bounds [0.7506, 0.9052] [0.7506, 0.8776] [0.7506, 0.8680]
Average Bias [0.0005, 0.0000] [0.0005, -0.0005] [0.0005, -0.0004]
Confidence Sets: Average Endpoints [0.7279, 0.9099] [0.7279, 0.8829] [0.7279, 0.8751]
Confidence Sets: Average Length 0.1820 0.1550 0.1472
Coverage Probability (90% nominal) 0.9080 0.9190 0.9110
Time Estimation (sec) 0.28 0.22 0.03
Time Inference (min) 22 16 6

Large State Space: X = 250

T = 5, N = 100 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7506, 0.9054] [0.7506, 0.8785] [0.7506, 0.8688]
Average Estimated Bounds [0.7624, 0.9024] [0.7615, 0.8746] [0.7603, 0.8648]
Average Bias [0.0118, -0.0030] [0.0109, -0.0039] [0.0097, -0.0040]
Confidence Sets: Average Endpoints [0.6741, 0.9253] [0.6730, 0.9129] [0.6711, 0.8980]
Confidence Sets: Average Length 0.2512 0.2399 0.2269
Coverage Probability (90% nominal) 0.8780 0.8860 0.8900
Time Estimation (sec) 6 6 1
Time Inference (min) 521 433 212

T = 15, N = 1000 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7506, 0.9054] [0.7506, 0.8785] [0.7503, 0.8688]
Average Estimated Bounds [0.7524, 0.9058] [0.7524, 0.8787] [0.7524, 0.8690]
Average Bias [0.0018, 0.0004] [0.0018, 0.0002] [0.0018, 0.0002]
Confidence Sets: Average Endpoints [0.7316, 0.9099] [0.7316, 0.8848] [0.7321, 0.8761]
Confidence Sets: Average Length 0.1783 0.1532 0.1440
Coverage Probability (90% nominal) 0.898 0.8830 0.9040
Time Estimation (sec) 6 5 1
Time Inference (min) 446 399 125

Note: T = number of periods, N = number of markets, X = number of states.
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Table D3: Monte Carlo Results – Alternative subsample size, hN = N
4

Medium-sized State Space: X = 54

T = 15, N = 1000 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7501, 0.9052] [0.7501, 0.8781] [0.7501, 0.8684]
Average Estimated Bounds [0.7506, 0.9052] [0.7506, 0.8776] [0.7506, 0.8680]
Average Bias [0.0005, 0.0000] [0.0005, -0.0005] [0.0005, -0.0004]
Confidence Sets: Average Endpoints [0.7284, 0.9097] [0.7284, 0.8820] [0.7284, 0.8748]
Confidence Sets: Average Length 0.1813 0.1536 0.1464
Coverage Probability (90% nominal) 0.9020 0.8940 0.9060
Time Estimation (sec) 0.27 0.23 0.03
Time Inference (min) 20 15 6

Note: T = number of periods, N = number of markets, X = number of states.

Table D4: Monte Carlo Results – Changing the number of gridpoints

Medium-sized State Space: X = 54

T = 15, N = 1000 Restriction 1 Restriction 1 Restriction 1 Restriction 1

Gridpoints K 100 50 25 12

True Identified Set [0.7501, 0.9052] [0.7501, 0.9052] [0.7501, 0.9052] [0.7501, 0.9052]
Confidence Sets: Average Endpoints [0.7280, 0.9097] [0.7279, 0.9099] [0.7269, 0.9101] [0.7255, 0.9105]
Confidence Sets: Average Length 0.1817 0.1820 0.1832 0.1850
Coverage Probability (90% nominal) 0.9060 0.9080 0.9200 0.9420
Time Inference (min) 32 22 15 10

Note: T = number of periods, N = number of markets, X = number of states.
Our results use a gridchoice with K = 50.

Table D5: Monte Carlo Results – Change number of gridpoints & approximate Ĵ from above.

Medium-sized State Space: X = 54

T = 15, N = 1000 Restriction 1 Restriction 1 Restriction 1 Restriction 1

Gridpoints K 100 50 25 12

True Identified Set [0.7501, 0.9052] [0.7501, 0.9052] [0.7501, 0.9052] [0.7501, 0.9052]
Confidence Sets: Average Endpoints [0.7284, 0.9098] [0.7286, 0.9097] [0.7292, 0.9095] [0.7313, 0.9091]
Confidence Sets: Average Length 0.1814 0.1811 0.1803 0.1778
Coverage Probability (90% nominal) 0.9010 0.8970 0.8880 0.8450
Time Inference (min) 32 22 15 10

Note: T = number of periods, N = number of markets, X = number of states.
Our results use a gridchoice with K = 50.
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