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This Supplemental Material consists of the following sections: Section A provides information about

the data sources and the construction of key variables. Section B explains how we inferred the

selection rule that assigned municipalities to the Priority List. Section C shows relevant supporting

material: estimates from regressions that partial out the covariates, the estimated actual and

counterfactual distributions of the residuals, and suggestive evidence of possible channels linking

the Priority List to deforestation. Section D presents further discussions of the CIC and DID

models and estimated results. Section E shows how we incorporate dynamic treatment effects in our

counterfactual calculations. Section F provides a detailed explanation of how the minimax optimal

lists are computed in practice, Section G discusses several robustness exercises, and additional

tables and figures are shown in Section H.

A Data

In this section, we discuss data sources and the construction of variables used in our analysis.

Satellite-based measures of land use. Annual measures of ‘forested area remaining,’ the cumulative

deforested area, and incremental deforested area in each municipality are taken from the Brazilian

government’s satellite-based forest monitoring program, known as PRODES. Other land use classifi-

cations in PRODES include ‘non-forest’ (mostly cerrado, which is similar to savanna), hydrography,

clouds, and ‘unobserved.’1 The data are publicly available at both pixel and municipality levels.

*Contact information: Assunção – Departamento de Economia, PUC-Rio, Rua Marques de Sao Vicente,
225/F210, 22453-900 - Rio de Janeiro/RJ, Brazil (email: juliano@econ.puc-rio.br); McMillan – Department
of Economics, University of Toronto, 150 St. George Street, Toronto, ON M5S 3G7, Canada, and NBER (email:
mcmillan@chass.utoronto.ca); Murphy – Natural Resources Canada, 580 Booth Street, Ottawa, ON K1A 0E4,
Canada (email: joshua.murphy4@canada.ca); Souza-Rodrigues – Department of Economics, University of Toronto,
150 St. George Street, Toronto, ON M5S 3G7, Canada (email: e.souzarodrigues@utoronto.ca).

1Each year, a small amount of land area is not directly observed due to cloud cover. In our data, the average share
of cloud cover over the municipal area is 2.5 percent (and the median is zero). Deforestation that goes undetected
because of cloud cover in one year is attributed to the first subsequent year in which data permit a determination



Since 1998, Brazil’s National Institute for Space Research (INPE) has been using images from

LANDSAT-class satellites to produce the official statistics used by the government to track de-

forestation and inform public policy (INPE, 2017). The classification of land cover is performed

in several steps. First, because deforestation typically occurs during the dry season, INPE selects

LANDSAT images between July and September with minimal cloud coverage (the spatial resolution

is 60× 60 metres). Second, a linear spectral mixture model for each pixel in the data is estimated

in order to obtain the pixel’s fraction of different components that help predict land cover.2 INPE

then groups adjacent pixels in larger regions based on their spectral similarities. After that, it im-

plements a cluster unsupervised classification algorithm to generate the land cover classifications.

Finally, several photointerpreters verify the results (and reclassify the land cover where necessary,

based on specific contexts, historical data, and their judgement). Annual deforestation is calculated

taking August 1st of each year as the reference date. (A PRODES year spans the twelve months

up to July 31st of each calendar year.) Deforestation is considered irreversible – i.e., once an area

has been deforested, it remains classified as deforested in subsequent years.3

INPE’s classification focuses on detecting deforestation. Yet observed remaining forests have

missing observations in some years and do not always decrease monotonically over time (as they

should, given that deforestation is considered irreversible). For this reason, we opt to measure

‘remaining forest’ simply as the remaining available area in the municipality – that is, the total

municipal area minus the non-forested areas, water bodies, and previous cumulative deforested

areas (2002 is used as the base year). This guarantees consistency over time, the correlation

between our proxy and the forested area remaining from PRODES being 0.99. We drop observations

with minimal remaining available area (less than 6 km2). These are small municipalities mostly

located at the extreme eastern and southeastern regions of the Amazon Biome, which are not

especially relevant for policies intended to prevent deforestation.4 Finally, in order to calculate the

about land use. The ‘unobserved’ category is a residual classification reflecting difficulties that affect visibility, such
as shadows cast by clouds and smoke from forest fires.

2The pixel components considered are ‘soil,’ ‘vegetation,’ and ‘shade.’ The image fractions that correspond to
shade and soil help in the process of identifying deforested areas. Image fraction ‘shade’ is helpful for areas dominated
by tropical forests due to the various strata in the forest structure and the irregularity of the canopy, which contrasts
with a low amount of shade in deforested areas. Image fraction ‘soil’ helps identify transition/contact areas between
forest and cerrado (Camara et al., 2006).

3There is an important distinction between incremental deforested area and the deforestation rate. Incremental
deforested area measures newly detected primary forest loss, while the deforestation rate adds estimates of cleared
forest area that are under unobserved/clouded areas, based on local extrapolation, to that increment. The incremental
deforested area is available as spatial data: this is the deforestation measure we use in the empirical analysis. In
contrast, the deforestation rate is available only at the aggregate level (and is presented publicly by INPE as the
official measurement of annual deforestation). This distinction is needed to reconcile the profiles in Figures 1, H5
and H6 exactly.

4They consist of 26 municipalities in total (21 in the state of Maranhão and 5 in the Tocantins state), with
an average area approximately 6% of the average area of the municipalities in the final data set. Because of the
small values used in the denominator in the calculation of deforestation shares, these small municipalities also exhibit
implausibly large oscillations in shares of deforestation over time.
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log odds ratio of the shares of deforestation, we assume the minimum amount of deforestation in a

municipality in any year is 0.01 km2.5

Priority status. The official list of Priority municipalities (with precise dates for entry and exit)

comes from the Ministry of the Environment. Because there are few municipalities entering and

exiting the blacklist from 2009 on, not much can be said with a high degree of accuracy about the

impact of the policy in those cases. For this reason, we focus on the initial list of Priority munici-

palities. Specifically, the treatment group consists of municipalities that entered and remained on

the list from 2008 to 2010 inclusive. This gives a total of 35 municipalities, as one exited in 2010.

The untreated group is the set of municipalities that did not enter the list before 2010.

Protected areas. We calculate the total amount of protected area – whether managed by federal,

state, or municipal government – using geo-referenced data from the National Register of Conser-

vation Units, maintained by the Ministry of the Environment. Initiatives to create and expand

protected areas were concentrated in the first phase of the PPCDAm (spanning 2004-07), before

the first municipalities were assigned to the Priority List in 2008.

Prices. Historically, cattle ranching and crop cultivation have been important drivers of deforesta-

tion in the Amazon. To help disentangle the effects of changing commodity prices from the effects

of policy interventions on deforestation, we construct beef and crop price indices for each munici-

pality based on pre-determined cross-sectional variation in the crop mix across municipalities and

time-series variation in commodity prices. Commodity prices are determined on international mar-

kets: local farmers are price takers. Data on prices of the main commodities – beef, soy, rice, corn,

cassava, and cane sugar – are taken from the State Secretariat for Agriculture and Food Supply.6

The five selected crops account for approximately 70 percent of total harvested area in the Brazilian

Amazon (averaged across the 2000s). Prices are deflated to 2011 Brazilian reais. Municipality-level

data on the amount and value of each form of agricultural production, which we use to weight the

commodity prices, come from surveys administered by the Brazilian Institute of Geography and

Statistics (IBGE) – the Municipal Crop Survey and the Municipal Livestock Survey. Specifically,

for beef cattle, the weight is given by the ratio of head of cattle to municipal area (given that

annual pasture area is not observable). For crops, we first calculate a weighted price for each crop

by multiplying the commodity prices by the share of the municipal area used to cultivate the crop.

For all agricultural products, we fix the weights in the period 2000-01 (averaged over these two

years), so that they capture the relative importance of the different products within municipalities’

agricultural production in years preceding the (available) sample period, and preceding the struc-

5This is analogous to setting minimum shares in logit models to be greater than or equal to a small strictly
positive number ε > 0.

6The State Secretariat collects prices received by producers in the southern state of Paraná.
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tural break that occurred in 2004-05, associated with the first phase of the PPCDAm. Finally, we

apply principal component analysis to the individual weighted crop prices to derive a single index,

capturing the price variations common to the five selected crops. The crop index is based on the

first principal component; given that the first component maximizes price variance, it provides a

more comprehensive measure of the agricultural output price scenario for this analysis than the

individual prices (see Assunção et al., 2017; Assunção and Rocha, 2019).

Rainfall and Temperature. Drier forests require less effort to clear and convert to pasture or crop-

land because they can be burnt more easily. A prolonged dry season or otherwise low annual

rainfall can thus contribute to higher rates of deforestation. Our measures of annual precipitation

and temperature in each municipality are taken from Matsuura and Willmott (2012), whose gridded

estimates of total monthly precipitation and average temperature are based on spatial interpola-

tion of climate data from a large number of monitoring stations operating in South America and

elsewhere. We take the accumulated precipitation over the year as our rainfall variable; our annual

temperature is the average across months. (Annual values are constructed based on the PRODES

year.) Municipal data are obtained from the intersection of the municipal area with one or more

data points on the grid provided by Matsuura and Willmott (we take the within-municipality av-

erage when appropriate). In cases in which the intersection is empty, we construct a buffer area

around the municipality boundary and then take the intersection of the buffer area with the grid

points.

Municipalities’ Gross Domestic Product. Annual data on municipalities’ total and agricultural

GDP come from IBGE’s regional account system. Agricultural GDP includes crop and livestock

production.

Number of Cattle and Crop Area. Annual data on the number of cattle and crop area per munic-

ipality come from the IBGE’s surveys: the Municipal Livestock Survey and the Municipal Crop

Survey.

Agricultural Suitability. Data on agricultural suitability come from the Food and Agriculture Or-

ganization’s Global Agro-Ecological Zones project (FAO-GAEZ). Suitability is measured as the

crop maximum attainable yields at the field level (an area of approximately 100 km2) based on

the dominant type of soil, altitude, slope, climatic conditions (among other factors), as well as the

level of technology available. We follow Farrokhi and Pellegrina (2021) and consider a high-input

technology, corresponding to mechanized production that uses optimum amounts of nutrients and

chemical pest, disease and weed control. We select the soy and corn suitability measures (the most

important crops in the Brazilian Amazon) and aggregate each of them up to the municipality level.

(See Farrokhi and Pellegrina (2021) for a detailed description.)

4



Distance to Port. Straight-line distances from the municipal seats to the nearest port were calcu-

lated using ArcGIS, as explained in Souza-Rodrigues (2019). Data on the location of the municipal

seats and ports were produced by the Brazilian Ministry of Transportation for the 2006 National

Highway Plan.

Carbon Stock. The amount of carbon stock above ground is calculated by Baccini et al. (2012). We

combined their raster data of carbon stock with the PRODES data to calculate the average carbon

stock in forested and deforested areas in each municipality.

Fines. Data on the number of fines issued for environmental offenses come from IBAMA. We

collapse the information down to a municipality-year panel to match our deforestation data. To

maintain consistency, we consider the PRODES year as the relevant unit of time in our sample –

i.e., the total number of fines in a municipality in a given year captures all fines applied in that

municipality in the twelve months leading up to August of that year.

Alerts. Forest clearing alert data come from the Real-Time System for the Detection of Deforesta-

tion (DETER), developed and operated by the space agency INPE. DETER makes use of satellite

images from MODIS, which has a spatial resolution of 250m2 (25 hectares), and generates alerts

biweekly.7 The data are publicly available in vector format and are aggregated up to the monthly

level. Gandour (2018) has rasterized the georeferenced alerts at a 900m spatial resolution, and

constructed panel data in which a cell in the raster data takes on a value of 1 if it contains an alert

and a value of 0 otherwise. Gandour has also added the number of alerts per municipality per year

(consistently with the PRODES year), generously sharing the aggregated data with us.

The alert system was implemented in 2004, but remained in experimental mode through mid-

2005. While a few months of data are available for 2004 and early-2005, consistent alert data came

on stream in the second half of 2005 (Gandour, 2018). In accord with the time period covered in

our main data set, we make use of DETER alert data from 2006 to 2010.

Rural Credit. The Brazilian Central Bank collects detailed information covering all rural loan

contracts negotiated by farmers and banks (including private and state-owned banks, as well as

credit cooperatives). The microdata contain information about the amount borrowed, the interest

rate, initial and maturation dates, and the category under which credit was loaned (short-term

operating funds, investment, or commercialization). The values of the contract loans are aggregated

up to the municipality-year level (Assunção and Rocha, 2019).

7After 2015, INPE upgraded the system in order to detect changes in land cover in patches larger than 1 hectare
(instead of areas larger than 25 hectares), albeit less frequently (Gandour, 2018).
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B The Selection Rule

In this section, we explain briefly how we inferred the selection rule that assigned municipalities to

the Priority List. After investigating the scatterplots presented in Figure 3 of the main text (without

the thresholds) informally, we implemented a classification tree algorithm using the criteria variables

Zmt−1 as the explanatory variables. Specifically, we used the “crtrees” command in STATA, with

80% of the original data as the learning sample (split randomly), and the remaining 20% of the

observations as the testing sample – all other available options were set at their default levels.

The command crtrees implements classification and regression trees that are composed of three

sequential algorithms: ‘tree-growing,’ ‘tree-pruning,’ and ‘the honest tree’ (see, e.g., Breiman et al.,

1984). The tree-growing algorithm splits terminal nodes of the tree recursively in order to minimize

an overall ‘impurity’ measure (here, the Gini index) using the learning sample. The recursive

partitioning stops with the largest possible tree, denoted by TMAX .8 To avoid overfitting, the tree-

pruning algorithm then identifies a sequence of subtrees of TMAX that minimizes a cost-complexity

function. The cost-complexity function is given by the weighted sum of the impurity measure

and the complexity of the tree (i.e. the number of terminal nodes): the larger the weight on

the complexity, the simpler the optimal tree. A sequence of subtrees is obtained by sequentially

pruning TMAX based on increasing weights on complexity; pruning is done via a weakest-link

algorithm (i.e., an algorithm that collapses subtrees of TMAX into final nodes to minimize the cost-

complexity function). The resulting sequence of trees at this stage does not necessarily coincide

with the trees in the tree-growing phase. Finally, to reduce further overfitting, the honest tree

algorithm chooses from the tree-pruning set of trees the simplest one (i.e., the tree with the smaller

number of terminal nodes) among those that minimize the impurity measure in the testing sample.

The procedure classifies G = 1 at a final node if the share of treated observations is larger than the

share of untreated at that node.

The final classification tree we obtained from this procedure is presented in Figure H1. It

contains five nodes in total, three of which are final nodes. The decision tree is given by the

simple threshold rule: Gmt = {Z2
mt−1 ≥ 222} × {Z1

mt−1 ≥ 2, 137}, where {.} denotes the indicator

function.9 This is the selection rule presented in Figure 3 of the main text. This rule correctly

classifies 98% of the municipalities; it misclassifies just 8 municipalities out of 490: 6 untreated

municipalities (which are above the thresholds) and only 2 treated units (which are below the

thresholds).

Overall, the government seems to have overlooked a few municipalities (the six misclassified

untreated units) that are home to relevant agricultural activity (mainly, but not just, soybean

8It ceases either when all observations in the nodes have the same value or when the number of observations in
the nodes is smaller than some pre-established limit. (The default command in STATA sets the lower limit to one.)

9We rounded up the first threshold slightly, to 222 – an innocuous adjustment.
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production) and did not assign them to the Priority List. At the same time, the government

included two misclassified municipalities into the Priority List that have, on average, larger forested

areas and less economic pressure (as measured by local GDP and agricultural activities) than the

untreated municipalities. In terms of politics, only one of the misclassified municipalities had a

mayor that was affiliated with the political coalition of the Brazilian president.10

C Regressions, Distributions, and Possible Channels

In this section, we present relevant supporting material: estimates from regressions that partial

out the covariates Xmt, the estimated distributions of the residuals F
V j
gt

, and suggestive evidence

of possible channels linking the Priority List to deforestation.

Partialling-out Regressions. Table H2 reports the estimated coefficients from regressions that

project the log odds ratio of deforestation shares onto covariates and group statuses interacted

with time dummies, as explained in Section 5 of the main text. The first column in the table

ignores spillovers, while the second column incorporates spillover effects. All the coefficients have

the expected sign, the exceptions not being statistically significant. For example, the impact of

lagged rainfall on deforestation is significant and hump-shaped (reasonable given that both low

and high levels of rainfall make agriculture unproductive); the share of protected area is strongly

negatively related to the deforestation share; predetermined cropland area (as of 2001) is also

negatively related, though not significantly so; and agricultural suitability (as measured by FAO-

GAEZ agricultural potential for soy) is positively associated, as one would expect. These covariates

have significant explanatory power: together, they increase the R2 of the partialling-out regression

from a low 6.12% (not shown in the table) to 46% when taking spillovers into account.

Distributions of the Residuals. Table H3 presents the estimated supports of the residuals Vmt

for both the treated and untreated groups in all years 2006-10. It is clear that the supports of the

treated group are strictly inside the supports of the untreated group in every year. This leads to

the point identification of the ATT and to the partial identification of the ATU under Assumption

3, as explained in Section 5 of the main paper.

The estimated factual and counterfactual distributions of the residuals Vmt are presented in

Figures H2 and H3. They are similar to Figure 1, page 442, in A&I. The bottom panels (c)

and (d) of Figure H2 show the counterfactual distributions of the treated group in the absence of

treatment (dotted black lines) in 2009 and 2010, respectively. They are almost everywhere to the

10This unique case (Tabaporã, in Mato Grosso state) is an untreated municipality that is above the threshold.
While this municipality could have benefited from the political affiliations, that seems unlikely to us because it is not
a particularly relevant municipality in the national political arena.
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right of the corresponding actual distributions (dashed lines in the lighter shade), indicating that

the deforestation shares would have been higher in the absence of the policy – consistent with the

stochastic dominance tests presented in Section 6 of the main text. Further, we find larger effects at

lower quantiles than in upper quantiles (though not monotonically so). A possible explanation for

this pattern is that, conditional on observables, highly deforested locations (i.e., those at the upper

quantiles) may be well-suited to agriculture in terms of unobservables so that monitoring would

have to be substantial in order to reduce the amount of deforestation; better preserved locations

(i.e., at the lower quantiles), in contrast, may be more sensitive to monitoring and enforcement,

given the weaker underlying motivation to deforest there.

The bottom panels (c) and (d) of Figure H3 present the lower and upper bounds of the counter-

factual distributions of the untreated group had it been treated (dotted black and dotted lighter-

shaded lines) in 2009 and 2010, respectively. The reallocations of the probability masses to the

endpoints of the supports are clearly visible, given by the discontinuous jumps on the left and right

parts of the distributions. (In the interior of the support, the counterfactual cdf is point-identified.)

As expected, the counterfactual distributions are to the left of the actual cdfs, indicating lower

levels of deforestation among untreated municipalities if they had been put into the Priority List.

(Point-identified impacts are larger at lower quantiles than upper quantiles.)

Possible Channels. We now discuss possible channels through which the Priority List may have

affected deforestation. Membership of the list brought with it a bundle of provisions (as noted),

with farmers in Priority municipalities becoming subject to more rigorous monitoring and law

enforcement. They also faced more stringent conditions when seeking to obtain subsidized credit

contracts, along with stricter licensing requirements. At the same time, protected areas may have

been expanded by the government in a strategic way, taking into account the location of Priority

municipalities.

Given this bundle, we are interested in exploring whether particular components appear to

have been especially important in cutting deforestation (subject to data limitations). We do so

in a suggestive way by estimating how the effects of treatment status – treated versus control –

change over time for relevant outcome measures other than deforestation: a proxy for monitoring

(the number of alerts given out by INPE), a proxy for enforcement (the number of fines issued by

IBAMA), the total volume of rural credit concessions, and the share of protected areas.

Table H4 presents the regressions results, and Figure H4 provides visual evidence showing the

evolution of the coefficients on treatment status over time, relative to untreated municipalities in

2006, represented by the horizontal dashed line at zero.11

11Specifically, we regress the four observable measures – fines, alerts, credit, and protected area share – on Priority
status indicators interacted with time dummies, as well as on covariates, taking 2006 as the baseline year. Figure H4
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In terms of our monitoring proxy (panel (a) of Figure H4), the average number of alerts issued

in untreated municipalities is stable before and after the establishment of the Priority List, relative

to the base. This evidence does not suggest any major substitution of monitoring effort away from

untreated municipalities once the Priority List came into effect in 2008. In contrast, the number of

alerts is far higher for treated municipalities; it oscillates in the pre-treatment period, then declines

sharply after 2008, likely reflecting the deforestation slowdown there.

In terms of our enforcement proxy (panel (b)), the number of fines remains reasonably stable in

untreated municipalities during the period 2006-10, while it increases substantially among treated

municipalities between 2006 and 2008 and then falls back after that, again likely in response to

the lower deforestation rates observed there following the policy intervention. In combination, the

evidence suggests an increase in enforcement intensity focused on Priority municipalities, rather

than a substitution away from untreated municipalities.

There are no clear distinguishing patterns by treatment group status in terms of total rural credit

(aside from greater variability across the years among treated municipalities). In terms of shares

of protected areas by treatment status, an increase in the share among untreated municipalities

relative to 2006 is apparent: among treated municipalities, the changes in share are indistinguishable

from zero.

Together, this suggestive evidence helps shed light on whether there was simply a reallocation

of fixed resources following the Priority List’s introduction or whether state enforcement of en-

vironmental regulations increased. The evidence is consistent with more focused targeting being

combined with an increase in state capacity to implement environmental regulations, in turn alter-

ing municipal-level behavior (reflected in lower deforestation). This discussion complements (and

is consistent with) the analysis presented in Assunção and Rocha (2019).

D A Discussion of the CIC and DID Models

In this section, we first expand on the discussions of the rank invariance condition and the identi-

fication of the CIC model in the main text. Then we set out the standard DID model and draw

attention to reasons why we cannot use it in our optimal targeting analysis – reasons favoring the

use of CIC. We then discuss tests of parallel trends, and present various DID estimates, including

those from a specification that is made comparable to CIC (using the log odds ratio of deforestation

shares and no covariates).

Rank Invariance and Rank Similarity. We note that Assumption 1 in the main text imposes

a ‘rank invariance’ condition. Rank invariance preserves the intuitive notion that, conditional on

presents the coefficients on group status interacted with time dummies.
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observables, a relatively highly deforested location in the data remains a relatively highly defor-

ested location under alternative counterfactual policies – specifically, it preserves the rank u. The

condition has an undesirable consequence, however, implying that the distribution of the potential

outcomes (Y 0
mt, Y

1
mt), given G, is jointly degenerate, which may be implausible on logical grounds

(as pointed out by Heckman et al. (1997)).

In order to avoid this, the CIC framework can be extended to allow for a ‘rank similarity’ con-

dition, by incorporating two types of unobservables, U0
mt and U1

mt, one for each policy regime, with

identical distributions. Doing so relaxes rank invariance by not requiring that the unobservables

be identical, U0
mt = U1

mt ≡ Umt. Instead, it allows for a common component that makes these

unobservables correlated but not perfectly dependent. In this way, rank similarity allows a rela-

tively highly deforested municipality in the data to be more likely but not guaranteed to remain a

relatively highly deforested municipality under an alternative policy.12 While noting that all CIC

results extend to the (more appealing) rank similarity condition, we maintain Assumption 1 and

our original notation (with a single unobservable u) in the main text, for ease of exposition.

We also note here that Assumption 2 in the main text imposes a rank similarity condition –

now over time, not across policies. Rank invariance over time requires that a unit m in group G

that is at a given rank u (i.e., at a given quantile) in the distribution of U at the time period t

should be at the exact same rank (quantile) u in the distribution of U at t+ 1; this would render

the distribution of (Y j
mt, Y

j
mt+1), given G, jointly degenerate. Rank similarity, in contrast, does

not require the rank of a unit to be exactly the same over time; it requires the realizations of Umt

must be drawn from the same distribution, allowing for serial (but not perfect) correlation. This

argument also applies to the distributions of each term U0
mt and U1

mt over time, when allowing for

different unobservables under alternative policy regimes.

To summarize, rank similarity, together with the monotonicity assumption, allows us to match

treatment and control units properly (as we discuss in the next subsection), before and after

treatment, which is needed to construct counterfactual distributions while simultaneously avoiding

restricting units to preserve their exact ranks over time and across policy interventions.

Identification. In Section 5, we presented a simple version of the CIC model with two consecutive

periods t and t+ 1, before and after treatment. Now we provide an intuition for the identification

result, and compare it with the DID identification. To recap, A&I show that under Assumptions 1

12Formally, we can assume that Y j
mt = hj(Xmt, U

j
mt, t), for j ∈ {0, 1}, and that U0

mt and U1
mt have identical

distributions, given X and G. This allows for a common component in the unobservables: U0
mt = µmt + ε0mt and

U1
mt = µmt + ε1mt, where µmt is the common component, and ε0mt and ε1mt are idiosyncratic shocks with identical

distributions. Athey and Imbens (2006) note that the CIC model can be extended in this way in their footnote 17
on page 444.
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and 2, the counterfactual distribution for the treated group in the absence of treatment is given by

FY 0
1t+1

(y) = FY1t

(
F−1Y0t

(
FY0t+1(y)

))
, (D1)

where y ∈ Y0t+1. (A similar expression holds for the untreated group.)

We provide intuition in the context of our study as follows. Intuitively, equation (D1) uses

‘double-matching’ to construct the counterfactual distribution: a treated municipality that defor-

ested a fraction y of its forested area during period t is first matched to an untreated municipality

that deforested the same fraction during the same time period. Then the untreated municipality

is matched to its rank counterpart (i.e., in the same quantile) among untreated units in period

t+ 1. Let y′ denote the fraction deforested by this last unit during t+ 1, and define the difference

∆ ≡ y′−y. The difference between the shares of deforestation of the treated unit during t and dur-

ing t+1 in the absence of treatment is then given by the difference between the deforestation shares

of the untreated units with the same rank before and after treatment. That is, the counterfactual

share of deforestation of the treated quantile in the absence of treatment is given by y+ ∆.13 (See

Figure 1, page 442, in A&I for a clear exposition of their ‘double-matching’ procedure.)

This is similar to the adjustment in the standard DID model, but in the DID case, the adjust-

ment is linear and to the mean (under the parallel trends assumption), given by:

E(Y 0
1mt+1) = E (Y1mt) + [E (Y0mt+1)− E (Y0mt)] .

Importantly, because the CIC and DID models construct counterfactual outcomes in different

ways, there is no a priori reason to expect the CIC and DID estimators will generate similar point

estimates for the average treatment effects.

The Logistic DID Model. As a point of reference, we adopt a logistic regression framework

for our DID model as it is common in the empirical land use literature (see, e.g., Stavins, 1999;

Pfaff, 1999; Souza-Rodrigues, 2019) and is the closest specification to our semiparametric logit CIC

model; see Section 5 of the main paper. (Recall that a linear model applied to deforestation levels

predicts negative deforestation for a non-negligible fraction of the municipalities; this may lead to

biased ATT estimates and produce misleading results when constructing the counterfactual optimal

list.) In the standard DID model, the regression formulation is given by:

log

(
Ymt

1− Ymt

)
= X ′mtβ + δt + τ1 (Gm × δ2009) + τ2 (Gm × δ2010) + αm + ηmt , (D2)

13Note that the ‘double-matching’ here is based on the outcome variable, while selection-on-observables methods
perform matching based on covariates (or on propensity scores).
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where Xmt is a municipality-level vector of observed factors; δt are time dummies; αm is a

municipality-level fixed effect; ηmt is a time-varying unobservable factor; and (β, τ1, τ2) are the

parameters to be estimated. The parameters τ1 and τ2 equal the average treatment effect (in terms

of the log odds ratio of deforestation shares) among the treated municipalities during the first and

the second years of the program, respectively, thus allowing for time-varying treatment effects.

Given that the Priority List should reduce deforestation, one would expect τ1 ≤ 0 and τ2 ≤ 0. The

parameters can be estimated consistently based on (D2) using a fixed effect estimator, provided

that the parallel trends assumption holds – we provide formal econometric evidence below.

The main advantage of the fixed effects estimator in general is that, by eliminating the fixed

effects term αm from the estimated regression, it allows for potential correlations between αm and

the time-varying regressors, with no additional assumption on the distribution of the fixed effects

(nor of the idiosyncratic shocks ηmt).

There are, however, two difficulties that prevent us from using the DID model to calculate the

counterfactual optimal list – the main goal of this paper. First, converting the estimated results

for the log odds ratio into average treatment effects for deforestation levels is not possible without

assumptions on the distribution of unobservables – a common limitation in nonlinear panel data

models. Thus, estimating the parameters in (D2) is not sufficient for our goals. Second, the DID

model does not provide a framework for estimating average treatment effects on the untreated more

generally (not just for nonlinear models).

In contrast, our semiparametric logit CIC model allows us to estimate deforestation ATTs

under Assumptions 1 - 4 presented in the main paper. In order to mitigate concerns about possible

correlations between time-varying observables and time-invariant factors affecting deforestation in

the CIC model, we include several time-invariant covariates in the vectorXmt, such as measurements

of soil quality, distance to ports, and state dummies (described in the main text). Further, while

the DID model restricts group and time effects to be constant in the logistic specification, CIC

allows for extra flexibility and, therefore, richer heterogeneous effects. We also note that the fixed

effect estimator applied to (D2) requires covariates to be strictly exogenous for consistency. The

CIC partialling-out regression, in contrast, only requires contemporaneous exogeneity; we include

lagged variables when partialling covariates out to make this exogeneity condition more likely to

be satisfied in the data.

Parallel Trends Test. Before presenting the main DID estimates, we assess whether the trends in

the outcome variables are parallel in the pre-treatment period. First, we do so graphically. Panel (a)

of Figure H5 compares aggregate trends in deforestation for treated and untreated municipalities.

While differences in deforestation levels are apparent, new deforestation fell after 2005 for both

groups, and increased slightly in 2006-08. (The magnitudes are more pronounced among treated
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municipalities possibly because they are larger in size, on average.) In panel (b), we compare the

evolution across the two groups in the log odds ratio of deforestation shares – the outcome variable

in our empirical framework. The same pattern emerges, with level differences before 2008 but

similar movements for the two groups. There are no signs of any anticipation effects.

Figure H6 is similar to Figure H5 but splits the untreated group into the spillover and control

groups. The deforestation levels for the spillover group are found between the other two groups,

while the log odds ratios are slightly above those of the treated group. Again, the evolution profiles

are similar, especially after 2005. Of note, while deforestation slowed down in the three groups

after 2008, the slowdown among the spillover municipalities is not as pronounced as for Priority

units, but is more prominent than for control units.

Next we turn to formal testing.14 Table H5 presents the results, the first two columns ignoring

potential spillover effects, the last two columns incorporating them. In columns (1) and (3), we do

not include covariates, while columns (2) and (4) include them. The table indicates that the parallel

trends assumption holds before treatment: the coefficients on the time dummies interacted with

Priority and spillover status are not statistically significant before 2008 (aside from one interaction

in the fourth column).

This evidence accords with the discussion in Section 4, where we noted that the government’s

actual assignment of municipalities to the Priority List was consistent with a rule that selected

municipalities based primarily on the level (rather than the trend) of deforestation.

Estimated Results. Table H6 presents the coefficients from estimating variants of the DID

regression model specified in equation (D2). The first column does not include covariates, while

the second column does. In the third and fourth columns, we incorporate potential spillover effects

in the estimation strategy, splitting the untreated municipalities into ‘control’ and ‘spillover’ groups;

column (3) does not include covariates, while column (4) does.

In all specifications in the table, the Priority List appears to have reduced deforestation sub-

stantially. First, when ignoring spillovers, the coefficients on Priority status after treatment are

statistically significant, and show an average reduction in the odds ratio of the deforestation share

of 46% in 2009 and approximately 90% in 2010. The impacts are robust to the inclusion (or ex-

clusion) of the covariates, with the greater impact in 2010 consistent with farmers updating their

beliefs about the new policy regime. The pattern of increasing effects over time is similar to that

in the CIC model.

As mentioned previously, there is no a priori reason to expect the DID and CIC estimators will

generate similar point estimates, given that the DID and CIC models construct counterfactual out-

14In the main text, we present an analogous test for the CIC model – a placebo test in which we assess whether
the actual distribution of deforestation shares equals the counterfactual distribution if the policy intervention were
to be imposed (falsely) one year early.
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comes in different ways. Nevertheless, we find estimated effects from using CIC that are somewhat

smaller when computed on a comparable basis. For instance, applying the CIC estimator to the

log odds ratio of deforestation shares when not conditioning on covariates implies a reduction in

the odds ratio of 44% in 2009 and 69% in 2010, on average – smaller than the corresponding DID

estimates, given by the coefficients on Priority status presented in column (1) of Table H6.

Next, when potential spillover effects are taken into account, the coefficients on Priority status

presented in columns (3) and (4) are slightly greater than the corresponding estimates ignoring

potential spillovers. (The increase is similar to that in the CIC model.) The average impact on the

odds ratio is a 49% reduction in 2009 and around 96% in 2010. Overall, the estimated impacts of

the Priority List on deforestation are economically and statistically significant, and robust across

all specifications.

Columns (3) and (4) of the table also shed light on the estimated spillover effects of the Priority

List following treatment. We find these effects to be negative and statistically significant: there is

an average reduction in the odds ratio by approximately 38% in 2009 and by 77% in 2010. Again,

the impacts are robust to whether or not the covariates are included. The evidence indicates that

untreated municipalities with a treated neighbor and high levels of past deforestation reduce their

deforestation rates in response to the establishment of the Priority List (perhaps following belief-

updating by farmers). As expected, the (indirect) spillover effects are smaller in magnitudes than

the (direct) impacts of the policy on Priority municipalities, a pattern consistent with the estimated

CIC model.

E Dynamic Treatment Effects

In this section, we describe how dynamic treatment effects are incorporated into the analysis. Doing

so is important when calculating counterfactual deforestation, given the evolution of the remaining

forested area depends on deforestation in prior periods.

For simplicity, consider three consecutive periods: t, t+ 1, and t+ 2, where t refers to the time

period before the treatment, and t + 1 and t + 2 refer to the first and second time periods after

treatment. Here, we focus on the second period, t+ 2.

Conditioning on counterfactual deforestation in period t + 1, first note that for any level of

deforestation d, a unique v satisfies d = ϕ (X, v)×A. Then conditioning on potential deforestation

Dl at t+ 1 at deforestation level d, for j, l = 0, 1, and for group G = g, potential deforestation Dj
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at t+ 2 is

E
[
Dj
mt+2|Dl

mt+1 = d,Xmt+2, Xmt+1, Amt+1, Gm = g
]

= E
[
Dj
mt+2|Dl

mt+1 = ϕ (Xmt+1, v)×Amt+1, Xmt+2, Xmt+1, Amt+1, Gm = g
]

=

∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dF

V j
gt+2

(
v′
)
.

By the Law of Iterated Expectations,

E
[
Dj
mt+2|Xmt+2, Xmt+1, Amt+1, Gm = g

]
=

∫ [∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dF

V j
gt+2

(
v′
)]
dFV l

gt+1
(v) . (E3)

When the support condition does not hold, bounds for potential deforestation at t+ 2 become∫ [∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dFL

V j
gt+2

(
v′
)]
dFL

V l
gt+1

(v)

≤ E
[
Dj
mt+2|Xmt+2, Xmt+1, Amt+1, Gm = g

]
≤

∫ [∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dFU

V j
gt+2

(
v′
)]
dFU

V l
gt+1

(v) . (E4)

Based on this reasoning, one can compute (and bound) average treatment effects for any se-

quence of treatments for both treated and untreated groups in time periods t+ 3, t+ 4, etc.

F Minimax Optimal Policy

In this section, we explain in more detail how the ex-post optimal lists are calculated in practice.

First, recall that we do not select a list that changes over time, as explained in the main text,

because that would complicate the problem substantially. Instead, the optimal list is based on the

sum of deforestation in the two years after the treatment. To simplify, let t + 1 and t + 2 refer to

2009 and 2010, respectively.

Denote the counterfactual assignment rule by φ = (φ1, ...φM )′. This assigns the treatment to

municipalities m = 1, ...,M and can be either deterministic φm ∈ {0, 1} or probabilistic φm ∈ [0, 1].

Define the sum of expected deforestation in years 2009 and 2010 of municipality m in group Gm = g

if it is placed on the blacklist (φm = 1) by

DTgm ≡ E
[
DT
mt+1|Xmt+1, Amt+1, Gm = g

]
+ E

[
DT
mt+2|Xmt+2, Xmt+1, Amt+1, Gm = g

]
,

where the superscript T denotes ‘treated’ (note the slight change in notation to help exposition).
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The first term on the right-hand side is the expected deforestation in 2009, calculated based on

equation (5) in the main text, and the second term on the right-hand side is the expected deforesta-

tion in the following year, taking into account the (counterfactual) remaining forested area from

the previous year, given by equation (E3) in Section E of this supplement.

Clearly, DTgm ∈ DTgm ≡ [DTgm,D
T
gm], where DTgm is the sum of the lower bound for the expected

deforestation in 2009, given by the left-hand side of (6) in the main text, and the lower bound for

the expected deforestation in 2010, calculated based on the left-hand-side of (E4) in Section E of

this supplement; and DTgm is the sum of the upper bounds for the expected deforestations in 2009

and 2010, defined similarly by the right-hand sides of (6) and (E4), respectively. Naturally, when

the expected deforestation is point-identified, we obtain DTgm = DTgm = DTgm.

If m is not placed on the list (φm = 0), we have

DUgm ≡ E
[
DU
mt+1|Xmt+1, Amt+1, Gm = g

]
+ E

[
DU
mt+2|Xmt+2, Xmt+1, Amt+1, Gm = g

]
,

where the superscript U denotes ‘untreated.’ As before, we have that DUgm ∈ DUgm ≡ [DUgm,D
U
gm],

where DUgm and DUgm are the lower and upper bounds for the untreated unit, summing over expected

deforestation in 2009 and 2010. Again, under point-identification, we have DUgm = DUgm = DUgm.

The expected levels of deforestation, Djgm, for j ∈ {U, T} (and their bounds, Djgm and Djgm) are

estimated in the data using the CIC model.

F.1 The Baseline Case

When spillover effects are not considered, the policy maker solves the following minimax problem:

min
φ∈[0,1]M

max
D∈D

M∑
m=1

φm
[
{Gm = 1}DT1m + {Gm = 0}DT0m

]
+(1− φm)

[
{Gm = 1}DU1m + {Gm = 0}DU0m

]
,

where D = (D1, ...,DM ), with Dm = (DU0m,DU1m,DT0m,DT1m); the product set is D =
∏
m=1,...,M Dm,

with Dm = DU0m × DU1m × DT0m × DT1m; and {.} denotes the indicator function. Note that when

municipality m does not belong to group g, i.e., when Gm 6= g, we have that {Gm = g}Djgm = 0.

We can therefore set Djgm = 0 and Djgm = {0} for such cases without loss of generality.
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By noting that the inner maximization in the minimax problem above is given by

max
D∈D

M∑
m=1

φm
[
{Gm = 1}DT1m + {Gm = 0}DT0m

]
+ (1− φm)

[
{Gm = 1}DU1m + {Gm = 0}DU0m

]
=

M∑
m=1

max
Dm∈Dm

[
φm
[
{Gm = 1}DT1m + {Gm = 0}DT0m

]
+ (1− φm)

[
{Gm = 1}DU1m + {Gm = 0}DU0m

]]
=

M∑
m=1

φm

[
{Gm = 1}DT1m + {Gm = 0}DT0m

]
+ (1− φm)

[
{Gm = 1}DU1m + {Gm = 0}DU0m

]
, (F5)

we define the right-hand side of (F5) as the ‘social cost’ function, denoted by SC(φ).15 So the

policy maker’s problem under the minimax criterion simplifies to

min
φt∈[0,1]M

SC(φ), (F6)

It is convenient to convert this to matrix notation. Let Dj
g be an Mg × 1 vector with elements

Djgm, for j ∈ {T,U} and g ∈ {0, 1}, where Mg is the number of municipalities in group g. (Recall

that Djgm = Djgm when expected deforestation is point-identified.) Let Dj stack the vectors Dj
g for

all g, so

DT =

[
DT

0

DT
1

]
,DU =

[
DU

0

DU
1

]
.

Then,

SC (φ) = DU ′1 +
(
DT −DU

)′
φ,

where 1 is an M × 1 vector of ones. Minimizing SC(φ) under the constraints specified in the main

text involves a straightforward linear programming problem.

F.2 Incorporating Spillovers into the Optimal List

To take spillover effects into account, we consider three groups in the data: Gm ∈ {0, 1, 2}. Group

1 is the treated group; group 0 is the ‘pure’ control; and group 2 is the ‘spillover’ group, composed

of the untreated municipalities that satisfy the following two criteria: (i) they have at least one

neighbor treated and (ii) their previous deforestation levels were close to the threshold selection

criteria.

There are three possibilities to consider when selecting a municipality to the optimal list: If a

municipality m is placed on the blacklist (φm = 1), the expected deforestation is given by DTgm, as

before. If it is not placed on the list (φm = 0), there are two possible levels of deforestation: (i) if

15That is because the maximum of a finite sum of positive bounded numbers equals the sum of the maximum
values that these numbers can take.
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m has either no neighbor treated or is ‘far’ from the threshold criteria, expected deforestation is

DUgm; (ii) if it has at least one neighbor treated and is ‘close’ to the threshold criteria, deforestation

is DSgm (where we use superscript S to denote ‘spillover’). Note that the same criteria used to

define the spillovers group in the data is also used when determining the optimal blacklist. I.e., we

assume that spillovers operate in the counterfactual scenario in the same manner they operate in

the observed data. All terms (DTgm,DUgm,DSgm), and their corresponding upper bounds, are given by

the sum of the expected deforestations in 2009 and 2010, and are calculated as explained previously.

To be specific, in order to incorporate spillovers in the social cost function, SC(φ), we first

consider the ‘treated neighbor’ component of the criteria. The adjacency matrix indicating whether

municipality m and n are neighbors is given by

W =


0 w12 · · · w1M

w21 0 · · · w2M

...
...

. . .
...

wM1 wM2 · · · 0

 ,

where wmn equals 0 if m and n are not neighbors, and it equals 1 if they are neighbors (setting

wmm = 0). Given W and a deterministic assignment rule to treatment φ ∈ {0, 1}M , the number of

neighbors of m that are treated is given by
∑M

n=1wmnφn. Define the function

Nm (φ) = 1

{
M∑
n=1

wmnφn > 0

}
,

which equals one if there is at least one neighbor of m treated, and zero if m has no neighbor

treated.

Next, consider the second criterion: whether past deforestation of m is close to the threshold

rule or not. Denote this by the indicator variable Rm ∈ {0, 1}. The two criteria are satisfied

only when RmNm (φ) = 1. Specifically, if m is not placed on the blacklist (φm = 0), we expect

deforestation to be DUgm when RmNm (φ) = 0, and DSgm when RmNm (φ) = 1.

Following the reasoning presented in the previous subsection, the policy maker’s social cost
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function (corresponding to the inner maximization in the minimax problem) is now given by

SC (φ) =

M∑
m=1

φm

[
{Gm = 0}DT0m + {Gm = 1}DT1m + {Gm = 2}DT2m

]
+ (1− φm) (1−RmNm (φ))

×
[
{Gm = 0}DU0m + {Gm = 1}DU1m + {Gm = 2}DU2m

]
+ (1− φm) (RmNm (φ))

×
[
{Gm = 0}DS0m + {Gm = 1}DS1m + {Gm = 2}DS2m

]
.

As before, let Dj
g be an Mg × 1 vector with elements Djgm, for j ∈ {U, T, S} and g ∈ {0, 1, 2}.

Let Dj stack the vectors Dj
g for all g, giving

DU =


DU

0

DU
1

DU
2

 ,DT =


DT

0

DT
1

DT
2

 ,DS =


DS

0

DS
1

DS
2

 .
Also define the vector satisfying the criteria for the spillovers effects:

NR(φ) = {Wφ > 0} ◦R,

where R is the M×1 vector of municipalities with elements Rm ∈ {0, 1}, and ◦ indicates Hadamard

(i.e., element-by-element) multiplication. Then

SC (φ) =
[
DU +Diag

(
DS −DU

)
NR(φ)

]′
1

+
[
DT −DU −Diag

(
DS −DU

)
NR(φ)

]′
φ,

where Diag
(
DS −DU

)
is the diagonal matrix with the elements of the vector DS − DU in the

diagonal.

Given that SC(φ) is non-linear and non-differentiable in φ (because of Nm (φ)), we cannot solve

the minimax problem using standard methods (e.g., linear programming or Newton-Raphson).

Instead, we use the genetic algorithm to find the global minimum (Deep et al., 2009).

The genetic algorithm is a stochastic search algorithm – convenient in the current context

because it allows for integer optimization in high-dimensional constrained minimization problems.

The procedure requires an initial population matrix, in which each row represents a guess for the

optimal list, φ – that is, each row is composed of elements taking values that are either zeros or

ones specifying which of the M = 490 municipalities are to be included on the optimal list, subject

to the constraint in question (either total number of municipalities or total municipality area).
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In each step, the objective function is evaluated for each ‘individual’ (vector) in the population

matrix, and the most ‘promising’ individuals (in terms of minimizing the criterion function) are

selected stochastically from the population. The selected vectors are then modified – recombined

and possibly randomly mutated – to form a new generation of candidate solutions. The new

generation is then used in the next iteration of the procedure. The algorithm stops when the value

of the criterion function cannot be further reduced (up to a pre-determined tolerance level), or

when a maximum number of generations has been reached.

For each minimization problem considered in the main text, we run the algorithm 20 times. Each

time, we provide an initial population matrix with 2,000 candidate solutions. The initial population

is composed of (a) the observed list, (b) the optimal list obtained by solving the linear programming

problem using the worst-case deforestation for untreated municipalities, regardless of whether an

untreated municipality has a neighbor treated or not, (c) the list of municipalities in ascending order

of municipality area, (d) the list of municipalities in descending order of municipality area, and (e)

1,995 randomly generated lists that satisfy the constraint (and that are independently generated

every time we run the algorithm). The fraction of ‘promising’ individuals is set to be 20 percent of

the population, and the mutation rate is set at 0.01. The maximum number of generations allowed

is 49,000 (which equals 100 times the number of municipalities M = 490), and the tolerance level

for the objective function is 1e − 7. (We note that the algorithm always stopped before hitting

the maximum number of generations.) To check the reliability of the genetic algorithm in our

context, we also implemented it in the no spillover case (i.e., when the linear programming solution

is appropriate), and always obtained very similar results (up to numerical precision).

We implemented the algorithm in MATLAB using the command “ga,” which is part of MAT-

LAB’s global optimization toolbox. For details about the creation, crossover, and mutation func-

tions used in the integer programming version of the genetic algorithm, see Deep et al. (2009).

G Robustness Analyses

In this section, we investigate the robustness of our main results to (i) the choice of baseline year,

(ii) the way observations were trimmed to reduce the impact of outliers on the estimated treatment

effects, and (iii) the definition of the spillover group.

Alternative Baseline Years. Here, we consider the use of each alternative baseline year, 2006

and 2007. Table H7 shows the results for the average treatment effects. For each post-treatment

year, we present the estimates based on (a) the baseline year 2006, (b) the main specification

(averaging across the two baseline years), and (c) the baseline year 2007. (Table H7 is comparable

to Table 2 in the main text.) The results are similar across the baseline years. The estimated ATTs

20



are between −21 km2 and −28 km2 in 2009, and increase to between −53 km2 and −63 km2 in

2010. The estimated bounds for the ATU and ATE are similar in magnitude across the baselines

years as well. (All treatment effects are significantly different from zero.)

Table H8 presents the implications of the counterfactual optimal lists for deforestation and

carbon emissions (which are comparable to Table 6 in the main text). As before, we show results

for each baseline year and the main specification. Again, the results are robust to the choice of

baseline year.

Trimming. Recall that by placing all probability mass outside the support Y1t+1 at the left and

right end points of Y0t+1, we obtain the lower and upper bounds for FY 1
0t+1

; the same reasoning

applies to FY 0
1t+1

. In practice, we follow the literature and trim observations below the 3rd and

above the 97th percentiles to minimize the influence of outliers (Ginther, 2000; Lee, 2009). We now

show that the empirical results are robust to such trimming – specifically, trimming observations

below and above the percentiles [2.5, 97.5] and [3.5, 96.5]. Table H9 presents the results for the

average treatment effects. The top panel shows the estimated ATT, ATU, and ATE when we trim

the observations below the 2.5th and above the 97.5th percentiles, while the bottom panel presents

the results when the 3.5th and 96.5th percentiles are used. (Table H9 is comparable to Table 2 in

the main text.) The ATTs are unaffected by the trimming, and the estimated identified sets for the

ATU and ATE differ only slightly across specifications (and all treatment effects are significantly

different from zero).

Table H10 presents the implications for the counterfactual optimal lists. As before, the top

panel presents results for the [2.5, 97.5] trimming, and the bottom panel, for the [3.5, 96.5] trimming

(comparable to Table 6 in the main text). Once again, the results are robust across these different

specifications.

Spillovers. As explained in the main text, one of the criteria used to define whether a municipality

belongs to the spillover group or not concerns whether it has high levels of past deforestation.

Formally, we imposed the following condition: Z1
mt−1 ≥ 0.7×2, 137 km2 and Z2

mt−1 ≥ 0.7×222 km2.

We now show that the results are robust to different definitions of closeness of past deforestation

to these thresholds, considering Z1
mt−1 and Z2

mt−1 greater than 65 percent and 75 percent of the

threshold criteria.

The top panel of Table H11 shows the ATT, ATU, ATS, and ATE when we consider the 65

percent definition for the spillover group, and the bottom panel presents the results based on the

75 percent definition. (Table H11 is comparable to Table 3 in the main text.) The ATTs and

the identified sets for the ATU are essentially unaffected. The estimated ATSs increase as we

move from the 65 percent to the 75 percent definitions (though not always monotonically). This
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is consistent with the interpretation that the greater the deforestation level in a municipality, the

closer it is to the threshold criteria, and the more likely it is that farmers there may react to the

policy intervention. So, when the spillover group is composed of municipalities with lower levels of

past deforestation (the 65 percent group definition), we expect the treatment effects to be smaller

than when the group is composed of municipalities with higher levels of past deforestation. Still,

the estimated magnitudes of the ATSs are similar across the different threshold criteria.

Table H12 presents the implications for the optimal lists (comparable to Table 6 in the main

text). Again, the results are robust to alternative definitions, this time of the spillover group.

H Additional Tables and Figures

Table H1: Aggregate Time Series Data

Policies

Total new Municipalities Number of Expansions to

Year deforested area on Priority List fines issued protected area

2002 24,812 0 1,090 –

2003 29,243 0 2,906 6,499

2004 26,283 0 3,903 5,880

2005 22,838 0 4,107 14,985

2006 10,601 0 5,568 19,209

2007 11,142 0 4,696 16,314

2008 12,773 36 (+36/-0) 7,451 6,783

2009 5,568 43 (+7/-0) 5,607 2,729

2010 5,973 42 (+0/-1) 4,737 55

2011 5,547 47 (+6/-1) 5,113 86

2012 4,335 45 (+2/-4) – –

2013 5,185 – – –

Notes: Balanced Panel of 526 municipalities in the Amazon Biome.
Areas are measured in square kilometers.
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Table H2: Partialling-Out Regression

(1) (2)
Log odds Log odds

Control Group x Year=2006 -1.067 -1.303
(0.179) (0.187)

Control Group x Year=2007 -0.946 -1.177
(0.176) (0.184)

Control Group x Year=2008 -0.507 -0.706
(0.174) (0.182)

Control Group x Year=2009 -1.436 -1.623
(0.180) (0.189)

Control Group x Year=2010 -1.213 -1.376
(0.179) (0.182)

Treated Group x Year=2006 -0.121 -0.119
(0.112) (0.112)

Treated Group x Year=2007 -0.0126 -0.00287
(0.136) (0.137)

Treated Group x Year=2009 -1.127 -1.126
(0.163) (0.163)

Treated Group x Year=2010 -1.297 -1.294
(0.180) (0.180)

Spillovers Group x Year=2006 -0.216
(0.181)

Spillovers Group x Year=2007 -0.116
(0.212)

Spillovers Group x Year=2008 -0.205
(0.192)

Spillovers Group x Year=2009 -1.235
(0.203)

Spillovers Group x Year=2010 -1.283
(0.304)

Lagged Rainfall 0.127 0.112
(0.0543) (0.0546)

Lagged Rainfall Squared -0.00388 -0.00360
(0.00112) (0.00112)

Lagged Temperature 0.0479 0.0472
(0.0464) (0.0433)

Share of Protected Areas -2.412 -2.369
(0.238) (0.238)

Price of Beef Lagged 0.00278 0.00422
(0.00227) (0.00231)

Price of Crops Lagged 0.263 0.289
(0.328) (0.319)

Lagged GDP -0.00331 -0.00459
(0.0520) (0.0521)

Crop Area by 2001 -0.000339 -0.000339
(0.000249) (0.000226)

Cattle Heads by 2001 0.000964 0.000528
(0.000436) (0.000458)

FAO-GAEZ Corn -0.00661 -0.00281
(0.00611) (0.00629)

FAO-GAEZ Soy 0.0565 0.0510
(0.0244) (0.0242)

Distance to Port -0.0000998 -0.000144
(0.000238) (0.000235)

R2 0.454 0.460
Observations 2445 2445

Notes: An observation is a municipality in the Brazilian Amazon. The dependent variable
is the log odds ratio of deforestation shares. Rainfall is measured in millimeters (mm) and
temperature is measured in degrees Celsius (◦C). Price of beef is a weighted average of
international beef prices weighted by the ratio of head of cattle to municipal area. Price
of crops is the price index based on a principal component analysis applied to individual
weighted prices of the most predominant crops in the Brazilian Amazon (the weights are
given by the share of the municipal area used to cultivate the crop). For all agricultural
products, the weights are fixed in the period 2000–2001. Municipal GDP is measured in
million Reais. All monetary amounts are expressed in December 2011 Reais. Crop area
in 2001 is measured in km2. Cattle heads in 2001 is measrured in thousands. FAO-GAEZ
Soy and FAO-GAEZ Corn consist of crops maximum attainable yields at the field level,
aggregated up to the municipality level. Distance to port is measured in kilometers. The
coefficients on the state dummies and on the constant term are omitted. Robust standard
errors in parentheses are clustered at the municipality level.
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Table H3: Support of Residuals Vmt, by Group and Time Period

Support of Vjt

2006 2007 2008 2009 2010

Untreated Group [-7.733, 3.864] [-6.555, 3.584] [-6.590, 3.569] [-6.958, 2.982] [-7.867, 2.833]

Treatment Group [-1.668, 1.205] [-1.810, 1.324] [-1.784, 1.527] [-3.326, 0.956] [-3.441, 1.001]

Note: Authors’ calculation

Z2 ≥ 221.2

y = 0, with Pr = 1
y = 1, with Pr = 0

no

Z1 ≥ 2137

y = 0, with Pr = 0.875
y = 1, with Pr = 0.125

no

y = 0, with Pr = 0.143
y = 1, with Pr = 0.857

yes

yes

Figure H1: Selection Criterion: Classification Tree
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Table H4: Regressions on Other Outcomes: Alerts, Fines, Rural Credit, and Protected Areas

(1) (2) (3) (4)
Alerts Fines Total Credit PA Share

Untreated Group x Year=2007 -20.15∗ 1.247 -1227.7∗ 0.0319
(8.388) (1.413) (487.2) (0.0164)

Untreated Group x Year=2008 24.84∗∗ 5.344∗ -194.6 0.0627∗∗∗

(8.561) (2.179) (444.7) (0.0149)

Untreated Group x Year=2009 -0.525 3.466 -927.5 0.0593∗∗∗

(9.592) (2.440) (516.8) (0.0173)

Untreated Group x Year=2010 -14.51 2.026 1201.2∗ 0.0545∗∗∗

(9.039) (2.104) (538.3) (0.0161)

Treated Group x Year=2006 752.2∗∗∗ 14.99∗ 1476.4 -0.0413
(118.8) (5.964) (2851.4) (0.0355)

Treated Group x Year=2007 321.6∗∗∗ 24.28∗∗∗ -922.4 -0.0195
(70.89) (7.025) (2034.2) (0.0384)

Treated Group x Year=2008 670.7∗∗∗ 48.04∗∗∗ 6614.4 0.0225
(86.39) (12.02) (3374.5) (0.0385)

Treated Group x Year=2009 342.0∗∗∗ 33.71∗∗∗ -3426.3 0.0210
(88.18) (8.196) (2626.3) (0.0389)

Treated Group x Year=2010 125.4∗ 17.37∗∗ 3716.1 0.0115
(60.82) (5.630) (4168.2) (0.0401)

Lagged Rainfall 10.70∗∗ -0.404 -991.2∗∗∗ -0.000302
(3.547) (0.959) (258.1) (0.0115)

Lagged Rainfall Squared -0.252∗∗∗ -0.00540 21.21∗∗∗ -0.0000217
(0.0681) (0.0166) (5.233) (0.000235)

Lagged Temperature 12.33 1.418 -144.3 0.00810
(8.159) (1.205) (364.0) (0.0112)

Price of Beef Lagged -1.684∗∗∗ -0.222∗∗ -41.38∗∗ -0.00463∗∗∗

(0.431) (0.0730) (13.50) (0.000390)

Price of Crops Lagged 32.72 8.829 9131.3∗∗ -0.271∗∗∗

(33.50) (6.516) (3141.6) (0.0621)

Lagged GDP 5.793 4.672∗ 689.8∗ 0.00156
(6.174) (2.185) (288.7) (0.0134)

Crop Area by 2001 -0.0223 -0.00852 32.88∗∗∗ 0.0000914
(0.0299) (0.00469) (2.142) (0.0000497)

Cattle Heads by 2001 0.770 0.0419∗∗ 49.74∗∗∗ 0.0000528
(0.397) (0.0135) (6.780) (0.000110)

FAO-GAEZ Corn -0.882 -0.244∗ -20.97 0.000173
(0.823) (0.116) (42.97) (0.00106)

FAO-GAEZ Soy 2.502 -0.0393 205.7 -0.00123
(3.507) (0.376) (161.0) (0.00533)

Distance to Port 0.0800∗ 0.00602 1.591 0.000160∗∗

(0.0332) (0.00416) (1.650) (0.0000604)

R2 0.516 0.270 0.762 0.370
Observations 2445 2445 2320 2445

Notes: This table shows estimates from regressions of the outcome variables listed at the top of each
column on Untreated and Treated (Priority Status) indicators, interacted with time dummies, along with
other observables. An observation is a municipality in the Brazilian Amazon. The dependent variables are
(1) the number of fines, (2) the number of alerts, (3) the total rural credit, and (4) the share of protected
areas. Rainfall is measured in millimetres (mm) and temperature is measured in degrees Celsius (◦C).
Price of beef is a weighted average of international beef prices weighted by the ratio of head of cattle
to municipal area. Price of crops is the price index based on a principal component analysis applied to
individual weighted prices of the most predominant crops in the Brazilian Amazon (the weights are given
by the share of the municipal area used to cultivate the crop). For all agricultural products, the weights
are fixed in the period 2000-2001. Municipal GDP is measured in million Reais. All monetary amounts
are expressed in December 2011 Reais. The coefficient on the constant term and on the state dummies
are omitted. All regressions include municipality fixed effects. Robust standard errors in parentheses are
clustered at the municipality level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table H5: Pre-Treatment ‘Parallel Trends’ Test, 2003–2007

(1) (2) (3) (4)
Log odds Log odds Log odds Log odds

Treated Group x Year=2003 -0.286 -0.286 -0.300 -0.305
(0.184) (0.179) (0.188) (0.182)

Treated Group x Year=2004 0.127 0.205 0.145 0.227
(0.161) (0.165) (0.163) (0.167)

Treated Group x Year=2005 0.249 0.288 0.272 0.314
(0.153) (0.157) (0.157) (0.161)

Treated Group x Year=2006 -0.147 -0.107 -0.158 -0.115
(0.137) (0.137) (0.141) (0.141)

Spillover Group x Year=2003 -0.195 -0.197
(0.210) (0.202)

Spillover Group x Year=2004 0.251 0.308
(0.168) (0.167)

Spillover Group x Year=2005 0.305 0.339∗

(0.160) (0.163)

Spillover Group x Year=2006 -0.144 -0.0989
(0.133) (0.134)

Year=2003 1.132∗∗∗ 1.127∗∗∗ 1.147∗∗∗ 1.146∗∗∗

(0.0974) (0.100) (0.104) (0.107)

Year=2004 0.897∗∗∗ 0.830∗∗∗ 0.878∗∗∗ 0.813∗∗∗

(0.0655) (0.0991) (0.0697) (0.103)

Year=2005 0.689∗∗∗ 0.583∗∗∗ 0.666∗∗∗ 0.558∗∗∗

(0.0878) (0.0966) (0.0942) (0.103)

Year=2006 0.108 0.108 0.119 0.125
(0.0837) (0.0955) (0.0901) (0.102)

Lagged Rainfall 0.0581 0.0633
(0.0414) (0.0417)

Lagged Rainfall Squared -0.00166 -0.00174
(0.000896) (0.000903)

Lagged Temperature -0.376∗ -0.388∗

(0.158) (0.158)

Share of Protected Areas 0.838∗∗ 0.838∗∗

(0.300) (0.298)

Price of Beef Lagged -0.00107 -0.00104
(0.00830) (0.00831)

Price of Crops Lagged 0.886∗∗∗ 0.884∗∗∗

(0.183) (0.179)

Lagged GDP -0.356∗∗ -0.364∗∗

(0.132) (0.131)

R2 0.135 0.147 0.137 0.149
Observations 2454 2454 2454 2454

Notes: An observation is a municipality in the Brazilian Amazon. The dependent variable
is the log odds ratio of deforestation shares. Rainfall is measured in millimeters (mm) and
temperature is measured in degrees Celsius (◦C). Price of beef is a weighted average of
international beef prices weighted by the ratio of head of cattle to municipal area. Price
of crops is the price index based on a principal component analysis applied to individual
weighted prices of the most predominant crops in the Brazilian Amazon (the weights are
given by the share of the municipal area used to cultivate the crop). For all agricultural
products, the weights are fixed in the period 2000–2001. Municipal GDP is measured in
million Reais. All monetary amounts are expressed in December 2011 Reais. The coefficient
on the constant term is omitted. All regressions include municipality fixed effects. Robust
standard errors in parentheses are clustered at the municipality level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table H6: Difference-in-Differences Results

(1) (2) (3) (4)
Log odds Log odds Log odds Log odds

Treated Group x Year=2009 -0.456∗∗ -0.457∗∗ -0.486∗∗ -0.488∗∗

(0.150) (0.147) (0.152) (0.150)

Treated Group x Year=2010 -0.928∗∗∗ -0.887∗∗∗ -0.989∗∗∗ -0.948∗∗∗

(0.160) (0.156) (0.162) (0.159)

Spillover Group x Year=2009 -0.404∗∗ -0.379∗∗

(0.130) (0.130)

Spillover Group x Year=2010 -0.817∗∗∗ -0.767∗∗∗

(0.213) (0.211)

Year=2006 -0.370∗∗∗ -0.569∗∗∗ -0.370∗∗∗ -0.584∗∗∗

(0.0661) (0.0994) (0.0661) (0.0997)

Year=2007 -0.467∗∗∗ -0.564∗∗∗ -0.467∗∗∗ -0.566∗∗∗

(0.0659) (0.0729) (0.0660) (0.0729)

Year=2009 -0.948∗∗∗ -0.920∗∗∗ -0.918∗∗∗ -0.893∗∗∗

(0.0769) (0.0763) (0.0816) (0.0810)

Year=2010 -0.672∗∗∗ -0.730∗∗∗ -0.611∗∗∗ -0.673∗∗∗

(0.0806) (0.0830) (0.0844) (0.0872)

Lagged Rainfall 0.142∗∗ 0.133∗∗

(0.0483) (0.0481)

Lagged Rainfall Squared -0.00329∗∗∗ -0.00316∗∗

(0.000971) (0.000966)

Lagged Temperature 0.175 0.168
(0.0908) (0.0903)

Share of Protected Areas 0.603 0.527
(0.671) (0.666)

Price of Beef Lagged -0.0231∗∗∗ -0.0232∗∗∗

(0.00653) (0.00652)

Price of Crops Lagged -0.190 -0.269
(0.331) (0.336)

Lagged GDP -0.557 -0.551
(0.511) (0.504)

Covariates NO YES NO YES
R2 0.098 0.113 0.103 0.118
Observations 2450 2450 2450 2450

Notes: An observation is a municipality in the Brazilian Amazon. The dependent variable
is the log odds ratio of deforestation shares. Rainfall is measured in millimeters (mm) and
temperature is measured in degrees Celsius (◦C). Price of beef is a weighted average of
international beef prices weighted by the ratio of head of cattle to municipal area. Price
of crops is the price index based on a principal component analysis applied to individual
weighted prices of the most predominant crops in the Brazilian Amazon (the weights are
given by the share of the municipal area used to cultivate the crop). For all agricultural
products, the weights are fixed in the period 2000–2001. Municipal GDP is measured in
million Reais. All monetary amounts are expressed in December 2011 Reais. The coefficient
on the constant term is omitted. All regressions include municipality fixed effects. Robust
standard errors in parentheses are clustered at the municipality level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table H7: Robustness: Deforestation Average Treatment Effects, Alternative Baseline Years

Average Treatment Effects: Deforestation (km2)

ATT ATU ATE

2009
Baseline 2006 -20.72 [-3.61, -3.19] [-4.83, -4.44]

(-23.74, -17.70) (-3.74, -3.09) (-4.98, -4.32)

Main Specification -24.49 [-4.04, -3.67] [-5.50, -5.15]
(-27.64, -21.34) (-4.16, -3.58) (-5.65, -5.04)

Baseline 2007 -28.26 [-4.48, -4.14] [-6.18, -5.86]
(-32.17, -24.36) (-4.60, -4.05) (-6.33, -5.73)

2010
Baseline 2006 -52.69 [-6.71, -5.72] [-10.00, -9.08]

(-57.50, -47.88) (-6.85, -5.61) (-10.17, -8.92)

Main Specification -57.97 [-6.84, -5.95] [-10.49, -9.66]
(-62.95, -52.99) (-6.97, -5.85) (-10.66, -9.52)

Baseline 2007 -63.25 [-6.97, -6.18] [-10.99, -10.25]
(-69.13, -57.37) (-7.10, -6.07) (-11.17, -10.08)

Notes: 95% confidence intervals are in parentheses. For ATT, the intervals are computed based
on the standard i.i.d. nonparametric bootstrap, where the i.i.d. resampling occurs in the cross-
sectional dimension. For ATU and ATE, they are based on Imbens and Manski (2004). We
implemented 500 bootstrap replications. Deforestation is measured in square kilometres.

Table H8: Robustness: Ex-Post Optimal, Alternative Baseline Years

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation
Baseline 2006 1.06 - 1.06 - 1.20 -
Main Specification 1.06 - 1.06 - 1.22 -
Baseline 2007 1.06 - 1.07 - 1.24 -

Total Carbon Emissions
Baseline 2006 1.05 597 1.08 920 1.23 2,793
Main Specification 1.05 622 1.08 975 1.26 3,094
Baseline 2007 1.05 646 1.09 1,031 1.28 3,383

Notes: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon of US$ 20/tCO2.
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Table H9: Robustness: Deforestation Average Treatment Effects, Trimming

Average Treatment Effects, Trimming: 2.5th and 97.5th Percentiles

ATT ATU ATE

2009 -24.49 [-4.05, -2.85] [-5.51, -4.39]
(-27.64, -21.34) (-4.17, -2.76) (-5.66, -4.28)

2010 -57.97 [-6.86, -5.14] [-10.51, -8.91]
(-62.95, -52.99) (-6.98, -5.03) (-10.68, -8.76)

Average Treatment Effects, Trimming: 3.5th and 96.5th Percentiles

ATT ATU ATE

2009 -24.49 [-4.04, -3.71] [-5.50, -5.20]
(-27.64, -21.34) (-4.16, -3.63) (-5.64, -5.09)

2010 -57.97 [-6.83, -6.60] [-10.48, -10.27]
(-62.95, -52.99) (-6.95, -6.51) (-10.65, -10.12)

Notes: 95% confidence intervals are in parentheses. For ATT, the intervals
are computed based on the standard i.i.d. nonparametric bootstrap, where
the i.i.d. resampling occurs in the cross-sectional dimension. For ATU and
ATE they are based on Imbens and Manski (2004). We implemented 500
bootstrap replications. Deforestation is measured in square kilometres.

Table H10: Robustness: Ex-Post Optimal, Trimming

Trimming: 2.5th and 97.5th Percentiles

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation 1.04 - 1.05 - 1.20 -

Total Carbon Emissions 1.03 429 1.06 746 1.24 2,906

Trimming: 3.5th and 96.5th Percentiles

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation 1.07 - 1.07 - 1.23 -

Total Carbon Emissions 1.06 709 1.09 1,077 1.27 3,178

Notes: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon of US$ 20/tCO2.
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Table H11: Robustness: Deforestation Average Treatment Effects, Spillovers

Average Treatment Effects, Spillovers: Above 65 Percent of the Threshold

ATT ATU ATS ATE

2009 -27.25 [-3.76, -3.28] [-10.91, -10.86] [-6.00, -5.59]
(-30.55, -23.95) (-3.85, -3.21) (-12.61, -9.25) (-6.15, -5.47)

2010 -58.38 [-6.14, -5.60] [-18.92, -16.14] [-10.89, -10.21]
(-63.29, -53.48) (-6.25, -5.52) (-20.52, -14.38) (-11.06, -10.06)

Average Treatment Effects, Spillovers: Above 75 Percent of the Threshold

ATT ATU ATS ATE

2009 -27.02 [-3.88, -3.41] [-11.77, -11.74] [-6.00, -5.59]
(-30.26, -23.78) (-3.98, -3.34) (-14.23, -9.40) (-6.14, -5.47)

2010 -56.68 [-6.15, -5.59] [-21.18, -18.28] [-10.65, -9.99]
(-61.54, -51.82) (-6.26, -5.50) (-23.44, -15.70) (-10.81, -9.84)

Notes: 95% confidence intervals are in parentheses. For ATT, the intervals are computed
based on the standard i.i.d. nonparametric bootstrap, where the i.i.d. resampling occurs
in the cross-sectional dimension. For ATU, ATS, and ATE, they are based on Imbens and
Manski (2004). We implemented 500 bootstrap replications. Deforestation is measured in
square kilometres.

Table H12: Robustness: Ex-Post Optimal, Spillovers

Spillovers: Above 65 Percent of the Threshold

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation 1.11 - 1.09 - 1.26 -

Total Carbon Emissions 1.10 1,118 1.11 1,164 1.30 3,166

Spillovers: Above 75 Percent of the Threshold

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation 1.08 - 1.07 - 1.24 -

Total Carbon Emissions 1.07 834 1.09 991 1.28 3,174

Notes: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon of US$ 20/tCO2.
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(a) Untreated, 2007 and 2009 (b) Untreated, 2007 and 2010

(c) Treated, 2007 and 2009 (d) Treated, 2007 and 2010

Figure H2: Factual and Counterfactual Distributions of Residuals V
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(a) Treated, 2007 and 2009 (b) Treated, 2007 and 2010

(c) Untreated, 2007 and 2009 (d) Untreated, 2007 and 2010

Figure H3: Factual and Counterfactual Distributions of Residuals V
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Figure H4: Coefficients on Treatment Status, by Year: Alerts, Fines, Rural Credit, and Protected Areas
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Figure H5: Evolution of Deforestation by Priority Status: level and log odds ratio of shares
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Figure H6: Evolution of Deforestation by Group: level and log odds ratio of shares
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